




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长沙市K郡双语实验中学2025届高一下数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.2.函数的最小正周期是()A. B. C. D.3.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.4.设且,的最小值为()A.10 B.9 C.8 D.5.在中,角A、B、C所对的边分别为a、b、c,若a、b、c成等比数列,且,则()A. B. C. D.6.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,7.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.8.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.9.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形10.函数的零点所在的区间为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角的对边分别为,若的周长为,面积为,,则__________.12.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.13.数列的前项和为,,,则________.14.在中,若,则等于__________.15.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).16.将二进制数110转化为十进制数的结果是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.18.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?19.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.20.若是的一个内角,且,求的值.21.已知,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.2、C【解析】
根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.3、A【解析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.4、B【解析】
由配凑出符合基本不等式的形式,利用基本不等式即可求得结果.【详解】(当且仅当,即时取等号)的最小值为故选:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活利用“”,配凑出符合基本不等式的形式.5、A【解析】
先由a、b、c成等比数列,得到,再由题中条件,结合余弦定理,即可求出结果.【详解】解:a、b、c成等比数列,所以,所以,由余弦定理可知,又,所以.故选A.【点睛】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.6、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.7、B【解析】
设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【点睛】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.8、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.9、D【解析】
由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.10、C【解析】
分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.12、【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.13、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.14、;【解析】
由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.15、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.16、6【解析】
将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数;周期为,单调递减速区间:(2)证明见解析【解析】
(1)直接利用函数的性质写出结果.(2)利用单调性的定义和三角函数关系式的变换求出结果.【详解】(1)奇函数;周期为,单调递减区间:(2)任取,,,有因为,所以,于是,,从而,.因此余切函数在区间上单调递减.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18、(4)服用A药睡眠时间平均增加4.4;服用B药睡眠时间平均增加4.6;从计算结果来看,服用A药的效果更好;(4)A药
B药
6
4.
89565
45845
4.
794446844
7844567944
4.
46457
4544
4.
4
从茎叶图来看,A的数据大部分集中在第二、三段,B的数据大部分集中在第一、二段,故A药的药效好.【解析】(4)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(4.6+4.4+4.4+4.5+4.5+4.8+4.4+4.4+4.4+4.4+4.5+4.6+4.7+4.7+4.8+4.9+4.4+4.4+4.4+4.5)=4.4,=×(4.5+4.5+4.6+4.8+4.9+4.4+4.4+4.4+4.4+4.4+4.6+4.7+4.8+4.9+4.4+4.4+4.5+4.6+4.7+4.4)=4.6.由以上计算结果可得>,因此可看出A药的疗效更好.(4)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎4,4上,而B药疗效的试验结果有的叶集中在茎4,4上,由此可看出A药的疗效更好.考点:茎叶图、平均数.19、(1)2,6,14;(2)(3)【解析】
(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.20、【解析】
本题首先可根据是的一个内角以及得出和,然后对进行平方并化简可得,最后结合即可得出结果.【详解】因为是的一个内角,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店铺装修装饰合同协议
- 上门家教合同协议书模板
- 上下水改造协议合同协议
- 首层厂房出售合同协议
- 后八轮合作协议合同协议
- 工程广告分包协议书范本
- 建筑门面改造合同协议
- 工程建筑勘察合同协议
- 网络编辑师证书考试的实战演练与试题及答案
- 汇聚智慧2025年国际金融理财师试题及答案
- 2025广东省能源集团西北(甘肃)有限公司招聘18人笔试参考题库附带答案详解
- 寻甸城乡投资开发集团有限公司笔试信息
- 健康管理考试题库及答案
- 【MOOC】隧道工程-中南大学 中国大学慕课MOOC答案
- 铁路基础知识考试题库500题(单选、多选、判断)
- 银行保险客户KYC基础信息表
- “两票三制”专项整治工作方案(含检查表)
- 烯烃分离装置操作规程
- 停电作业工作票配电填写模板
- 二重积分的概念与性质(课堂PPT)
- 投标法人代表授权书
评论
0/150
提交评论