2025届广东省惠州市惠东中学数学高一下期末监测试题含解析_第1页
2025届广东省惠州市惠东中学数学高一下期末监测试题含解析_第2页
2025届广东省惠州市惠东中学数学高一下期末监测试题含解析_第3页
2025届广东省惠州市惠东中学数学高一下期末监测试题含解析_第4页
2025届广东省惠州市惠东中学数学高一下期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省惠州市惠东中学数学高一下期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则三个数、、由小到大的顺序是()A. B.C. D.2.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,123.等差数列的前n项和为,且,,则(

)A.10 B.20 C. D.4.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°5.已知函数,则下列结论不正确的是()A.是的一个周期 B.C.的值域为R D.的图象关于点对称6.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.7.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.8.已知点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.10.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值为________.12.过点且与直线l:垂直的直线方程为______.(请用一般式表示)13.已知扇形的圆心角为,半径为,则扇形的弧长为______.14.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.15.展开式中,各项系数之和为,则展开式中的常数项为__________.16.已知向量、满足:,,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列.(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值.18.如图,在四棱锥中,平面平面,四边形为矩形,,点,分别是,的中点.求证:(1)直线∥平面;(2)平面平面.19.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.20.如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.21.已知的顶点,边上的中线所在直线方程为,的平分线所在直线方程为,求:(Ⅰ)顶点的坐标;(Ⅱ)直线的方程

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

比较三个数、、与的大小关系,再利用指数函数的单调性可得出、的大小,可得出这三个数的大小关系.【详解】,,,,且,函数为减函数,所以,,即,,因此,,故选C.【点睛】本题考查指数幂的大小关系,常用的方法有如下几种:(1)底数相同,指数不同,利用同底数的指数函数的单调性来比较大小;(2)指数相同,底数不同,利用同指数的幂函数的单调性来比较大小;(3)底数和指数都不相同时,可以利用中间值法来比较大小.2、B【解析】

根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【详解】根据系统抽样原理知,抽样间距为200÷40=5,

当第5组抽出的号码为22时,即22=4×5+2,

所以第1组至第3组抽出的号码依次是2,7,1.

故选:B.【点睛】本题考查了系统抽样方法的应用问题,是基础题.3、D【解析】

由等差数列的前项和的性质可得:,,也成等差数列,即可得出.【详解】解:由等差数列的前项和的性质可得:,,也成等差数列,,,解得.故选:.【点睛】本题考查了等差数列的前项和公式及其性质,考查了推理能力与计算能力,属于中档题.4、D【解析】

根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.5、B【解析】

利用正切函数的图像和性质对每一个选项逐一分析得解.【详解】A.的最小正周期为,所以是的一个周期,所以该选项正确;B.所以该选项是错误的;C.的值域为R,所以该选项是正确的;D.的图象关于点对称,所以该选项是正确的.故选B【点睛】本题主要考查正切函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于基础题.6、B【解析】

通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【点睛】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.7、B【解析】

由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【详解】,因为对任意的恒成立,则,,解得:,故选B.【点睛】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.8、B【解析】

根据同角三角函数间基本关系和各象限三角函数符号的情况即可得到正确选项.【详解】因为点在第三象限,则,,所以,则可知角的终边在第二象限.故选:B.【点睛】本题考查各象限三角函数符号的判定,属基础题.相关知识总结如下:第一象限:;第二象限:;第三象限:;第四象限:.9、B【解析】

△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.10、B【解析】

利用正弦定理边化角,结合和差公式以及诱导公式,即可得到本题答案.【详解】因为,所以,,,,,.故选:B.【点睛】本题主要考查利用正弦定理边角转化求角,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值.【详解】依题意,由于,所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.12、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.13、9【解析】

由扇形的弧长公式运算可得解.【详解】解:由扇形的弧长公式得:,故答案为9.【点睛】本题考查了扇形的弧长,属基础题.14、【解析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【点睛】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.15、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.16、.【解析】

将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大项的值为,最小项的值为【解析】试题分析:(1)根据成等差数列,利用等比数列通项公式和前项和公式,展开.利用等比数列不是递减数列,可得值,进而求通项.(2)首先根据(1)得到,进而得到,但是等比数列的公比是负数,所以分两种情况:当的当n为奇数时,随n的增大而减小,所以;当n为偶数时,随n的增大而增大,所以,然后可判断最值.试题解析:(1)设的公比为q.由成等差数列,得.即,则.又不是递减数列且,所以.故.(2)由(1)利用等比数列的前项和公式,可得得当n为奇数时,随n的增大而减小,所以,故.当n为偶数时,随n的增大而增大,所以,故.综上,对于,总有,所以数列最大项的值为,最小值的值为.考点:等差中项,等比通项公式;数列增减性的讨论求最值.18、(1)见解析(2)见解析【解析】

(1)取中点,连接,,证得,利用线面平行的判定定理,即可证得直线∥平面;(2)利用线面垂直的判定定理,证得,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)取中点,连接,.在中,,分别为,中点,则且,又四边形为矩形,为中点,且,所以,故四边形为平行四边形,从而,又,,所以直线.(2)因为矩形,所以,又平面,面,,所以,又,则,又,,所以,又,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)(2)【解析】

(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧面均为等腰直角三角形.又,所以,又,.(2)因为侧棱SB,SA,SC互相垂直,平面SAB,所以平面SAB,.【点睛】本题主要考查线面位置关系的证明,考查面积和体积的计算,意在考查学生对这些知识的理解掌握水平.20、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到,可得平面,再利用等体积转化有,计算结果.【详解】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,,又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.【点睛】本题考查线面垂直、面面垂直的证明,考查空间中线线、线面、面面间的位置

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论