版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§12.3几何概型1.几何概型如果每个事件发生的概率只与构成该事件区域的______
(_____或_____)成比例,则称这样的概率模型为几何概率模型,简称为_________.长度面积体积几何概型3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有________;(2)等可能性:每个结果的发生具有_________.无限多个等可能性【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(
)(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.(
)【答案】
(1)√
(2)√
(3)×
(4)×
4.在长为3m的线段AB上任取一点P,则点P与线段AB两端点的距离都大于1m的概率等于________.(2)在区间[-5,5]内随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为________.【思维升华】
求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).【思维升华】
求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练2(1)(2018·湖北七市协作体联考)平面区域A1={(x,y)|x2+y2<4,x,y∈R},A2={(x,y)||x|+|y|≤3,x,y∈R}.在A2内随机取一点,则该点不在A1内的概率为________.【思维升华】
求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.跟踪训练3
一个长方体空屋子,长、宽、高分别为5米、4米、3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国有企业内审咨询合同
- 二零二四年度网络安全防护承包合同
- 混凝土浇筑项目分包合同范例
- 无负压供水设备工程项目招募书
- 学生勤奋努力保证书
- 比选招标内部精要
- 银行单位存款合同样式
- 服务外包合同的继承规定
- 食品供货采购合同
- 泥水分包合同书范本
- 2023年中国铁路成都局集团有限公司招聘考试真题
- 2024保密教育测试题含答案(综合题)
- 广东省深圳市福田区红岭教育集团2024-2025学年七年级上学期期中考试数学试卷
- 上海市2020-2021学年七年级下学期数学校本作业133同位角内错角同旁内角
- 2024-2030年中国土壤修复行业发展机遇规划研究报告
- 《企业ESG管理体系》
- 2024年第三届浙江技能大赛(供应链管理赛项)理论考试题库(含答案)
- 2024-2030年航空航天专用刀具行业市场现状供需分析及投资评估规划分析研究报告
- 2024年小学少先队工作总结参考(五篇)
- 2023年广西建设职业技术学院招聘考试真题
- 封窗安全事故免责协议书范文
评论
0/150
提交评论