版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省临夏州临夏中学2025届高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈2.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.63.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.44.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.5.数列中,若,,则()A.29 B.2563 C.2569 D.25576.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥7.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递增 B.在区间上单调递减C.在区间上单调递增 D.在区间上单调递减9.已知点满足条件则的最小值为()A.9 B.-6 C.-9 D.610.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为,最小值为,则的最小正周期为______.12.设是等差数列的前项和,若,则___________.13.已知数列的前项和满足,则______.14.已知点是所在平面内的一点,若,则__________.15.已知正数、满足,则的最大值为__________.16.在中,角的对边分别为,若,则角________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.18.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.19.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.20.在直角坐标系中,已知以点为圆心的及其上一点.(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程.21.已知向量,,.(1)求函数的最小正周期及单调递减区间;(2)记的内角的对边分别为.若,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.2、A【解析】
由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.3、C【解析】
数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.4、A【解析】
根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.5、D【解析】
利用递推关系,构造等比数列,进而求得的表达式,即可求出,也就可以得到的值。【详解】数列中,若,,可得,所以是等比数列,公比为2,首项为5,所以,.【点睛】本题主要考查数列的通项公式的求法——构造法。利用递推关系,选择合适的求解方法是解决问题的关键,常见的数列的通项公式的求法有:公式法,累加法,累乘法,构造法,取倒数法等。6、C【解析】
根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.7、C【解析】
利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。8、A【解析】
由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.【详解】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:,本题选择A选项.【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.9、B【解析】试题分析:满足约束条件的点的可行域,如图所示由图可知,目标函数在点处取得最小值,故选B.考点:线性规划问题.10、C【解析】
求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【详解】,当斜率不存在时满足题意,即【点睛】本题主要考查斜率公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先换元,令,所以,利用一次函数的单调性,列出等式,求出,然后利用正切型函数的周期公式求出即可.【详解】令,所以,由于,所以在上单调递减,即有,解得,,故最小正周期为.【点睛】本题主要考查三角函数的性质的应用,正切型函数周期公式的应用,以及换元法的应用.12、1.【解析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.13、5【解析】
利用求得,进而求得的值.【详解】当时,,当时,,当时上式也满足,故的通项公式为,故.【点睛】本小题主要考查已知求,考查运算求解能力,属于基础题.14、【解析】
设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.15、【解析】
直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:【点睛】本题考查了均值不等式,意在考查学生的计算能力.16、【解析】
根据得,利用余弦定理即可得解.【详解】由题:,,,由余弦定理可得:,.故答案为:【点睛】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②联立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.18、(1);(2),或.【解析】
(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【点睛】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.19、(1)见解析(2)【解析】试题分析:(Ⅰ)要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.知,因此要证平面,从而只要证,这在中可证;(Ⅱ)要求点到平面的距离,可过点作平面的垂线,由(Ⅰ)的证明,可得平面,从而有平面,因此平面平面,因此只要过作于,则就是的要作的垂线,线段的长就是所要求的距离.试题解析:(Ⅰ)证明:因为,,由余弦定理得.从而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足为.已知底面,则,由(Ⅰ)知,又,所以.故平面,.则平面.由题设知,,则,,根据,得,即点到面的距离为.考点:线面垂直的判定与性质.点到平面的距离.20、(1);(2)或【解析】
(1)由圆的方程求得圆心坐标和半径,依题意可设圆的方程为,由圆与圆外切可知圆心距等于两圆半径的和,由此列式可求得,即可得出圆的标准方程;(2)求出所在直线的斜率,设直线的方程为,求出圆心到直线的距离,利用垂径定理列式求得,则直线方程即可求出.【详解】(1)因为圆为,所以圆心的坐标为,半径.根据题意,设圆的方程为.又因为圆与圆外切,所以,解得,所以圆的标准方程为.(2)由题意可知,所以可设直线的方程为.又,所以圆心到直线的距离,即,解得或,所以直线的方程为或.【点睛】本题主要考查圆与圆的位置关系以及直线与圆的位置关系,其中运用了两圆外切时,圆心距等于两圆的半径之和,还涉及到圆的方程、直线的方程和点到直线的距离公式.21、(1)最小正周期为,单调递减区间为;(2)或【解析】
(1)由向量的数量积的运算公式和三角恒等变换的公式化简可得,再结合三角函数的性质,即可求解.(2)由(1),根据,解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【详解】(1)由题意,向量,,所以,因为,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度汽车轻量化零部件采购合同2篇
- 2024年度版权转让合同(文学作品)3篇
- 2024年度品牌加盟战略合作协议
- 2024中国石化齐鲁石化毕业生招聘11人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信河北公司春季招聘134人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国平安财产保险股份限公司福清中心支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国化学山东省公路建设(集团)限公司总部招聘82人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国一汽校园招聘1000+岗位易考易错模拟试题(共500题)试卷后附参考答案
- 2024下半年浙江湖州南太湖市政建设限公司人员招聘2人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海吉祥航空工具管理员招聘易考易错模拟试题(共500题)试卷后附参考答案
- 材料物理专业大学生职业生涯规划书
- GB/T 43357-2023钢丝绳一般性能试验方法
- 数字媒体艺术专业职业生涯规划书
- 餐饮外卖商标授权书范本
- 译林版小学英语六年级上册英文作文范文
- 小学生作文方格纸A4纸直接打印版
- 注塑产品作业指导书
- 第三节:我国周边安全环境
- 小学四年级心理健康课《化解冲突有办法》教学课件
- 《小学英语语法》课件
- 体育文献综述的撰写方法概述
评论
0/150
提交评论