版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省泸县二中2025届数学高一下期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,则实数的值为()A. B. C.2 D.32.二进制是计算机技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”。当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”。如图所示,把十进制数1010化为二进制数(1010)2,十进制数9910化为二进制数11000112,把二进制数(10110A.932 B.931 C.103.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π34.设的内角,,所对的边分别为,,,且,,面积的最大值为()A.6 B.8 C.7 D.95.已知直线经过,两点,则直线的斜率为A. B. C. D.6.已知平面向量,的夹角为,,,则向的值为()A.-2 B. C.4 D.7.已知正实数满足,则的最大值为()A.2 B. C.3 D.8.设集合,,则()A. B. C. D.9.若直线与直线平行,则的值为A. B. C. D.10.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.1024二、填空题:本大题共6小题,每小题5分,共30分。11.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.12.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.13.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.14.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.15.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.16.等比数列的首项为,公比为,记,则数列的最大项是第___________项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?18.2021年广东新高考将实行“”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(1)小明随机选课,求他选择偏理方向及生物学科的概率;(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.19.已知函数.(1)求函数的最小正周期;(2)将函数的图象向右平移个单位得到函数的图象,若,求的值域.20.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.21.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将向量的坐标代入中,利用坐标相等,即可得答案.【详解】∵,∴.故选:A.【点睛】本题考查向量相等的坐标运算,考查运算求解能力,属于基础题.2、D【解析】
利用古典概型的概率公式求解.【详解】二进制的后五位的排列总数为25二进制的后五位恰好有三个“1”的个数为C5由古典概型的概率公式得P=10故选:D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、A【解析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.4、D【解析】
由已知利用基本不等式求得的最大值,根据三角形的面积公式,即可求解,得到答案.【详解】由题意,利用基本不等式可得,即,解得,当且仅当时等号成立,又因为,所以,当且仅当时等号成立,故三角形的面积的最大值为,故选D.【点睛】本题主要考查了基本不等式的应用,以及三角形的面积公式的应用,着重考查了转化思想,以及推理与运算能力,属于基础题.5、C【解析】
由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.6、C【解析】
通过已知条件,利用向量的数量积化简求解即可.【详解】平面向量,的夹角为,或,则向量.故选:【点睛】本题考查向量数量积公式,属于基础题.7、B【解析】
由,然后由基本不等式可得最大值.【详解】,当且仅当,即时,等号成立.∴所求最大值为.故选:B.【点睛】本题考查用基本不等式求最值,注意基本不等式求最值的条件:一正二定三相等.8、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.9、C【解析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定10、C【解析】
因为,所以,则因为数列的各项均为正数,所以所以,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、10.【解析】
由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.12、【解析】
列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.13、【解析】
利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.14、【解析】
该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【点睛】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.15、【解析】
如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.16、【解析】
求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、80,280【解析】
将总费用表示出来,再利用均值不等式得到答案.【详解】设总费用为则当时等号成立,满足条件故最经济的车速是,总费用为280【点睛】本题考查了函数表达式,均值不等式,意在考查学生解决问题的能力.18、(1);(2)【解析】
(1)利用列举法,列举出偏理方向和偏文方向的所有情况,即可求得小明选择偏理方向且选择了生物学科的概率.(2)利用列举法,列举出两个人选择偏理方向且带有生物学科的所有可能,即可求得两人选课相同的概率.【详解】(1)由题意知,选六科参加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六种选择;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六种选择.由以上可知共有12种选课模式.小明选择偏理方向又选择生物的概率为.(2)小明选择偏理且有生物学科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三种选择,同样小吴也是三种选择;两人选课模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9种选课法,两人选课相同有三种,所以两人选课相同的概率.【点睛】本题考查了古典概型概率的求法,利用列举法写出所有可能即可求解,属于基础题.19、(1);(2).【解析】
(1)将已知函数转化为,结合周期的公式,即可求解;(2)利用三角函数的图象变换,求得,再结合三角函数的性质,即求解.【详解】(1)因为,所以的最小正周期;(2)若将函数的图象向右平移个单位,得到函数的图象对应的解析式为,由知,,所以当即时,取得最小值;当即时,取得最大值1,因此的值域为.【点睛】本题主要考查了三角函数的恒等变换,以及正项型函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2)【解析】
(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版建筑设计咨询与服务合同
- 二零二四年度供应合同:医疗设备长期供应协议3篇
- 2024年度全球市场营销与广告服务合同8篇
- 2024年度广告宣传策划与执行合同带眉脚
- 2024年度荒山造林树苗选购与种植合同2篇
- 二零二四年影视剧制作与发行合同
- 2024版全年场地租赁合同书2篇
- 2024年度城市广场地面硬化工程承包合同版B版
- 2024年企业安全生产责任合同范本版B版
- 2024年度新能源电动汽车充电站建设与运营合同2篇
- JJF 1630-2017分布式光纤温度计校准规范
- GB/T 36964-2018软件工程软件开发成本度量规范
- 三年级上册美术《美丽的花挂毯》课件
- 记承天寺夜游(优秀课件)
- 老人去世生平简历范文(通用十八篇)
- 离心泵的安装高度允许汽蚀余量法课件
- 冲压模具设计课程设计
- 理性追星主题班会课件
- 大班科学:天气预报课件
- 无人机结构与系统教学大纲
- 医院洁净空调安装工程施工方案
评论
0/150
提交评论