上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题含解析_第1页
上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题含解析_第2页
上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题含解析_第3页
上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题含解析_第4页
上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海宝山同洲模范学校2023-2024学年高一数学第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.2.如图,各棱长均为的正三棱柱,、分别为线段、上的动点,且平面,,中点轨迹长度为,则正三棱柱的体积为()A. B. C.3 D.3.在中,角的对边分别为,且,,,则的周长为()A. B. C. D.4.若且,则下列不等式成立的是()A. B. C. D.5.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.46.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)7.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.158.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.9.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.ΔABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=A.45° B.60° C.75° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则.12.已知向量满足,则13.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.14.在中,角的对边分别为,若,则_______.(仅用边表示)15.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)16.若数列满足,且,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数在区间上的最大值;(2)在中,若,且,求的值.18.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.19.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=20.内角的对边分别为,已知.(1)求;(2)若,,求的面积.21.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.2、D【解析】

设的中点分别为,判断出中点的轨迹是等边三角形的高,由此计算出正三棱柱的边长,进而计算出正三棱柱的体积.【详解】设的中点分别为,连接.由于平面,所以.当时,中点为平面的中心,即的中点(设为点)处.当时,此时的中点为的中点.所以点的轨迹是三角形的高.由于三角形是等边三角形,而,所以.故正三棱柱的体积为.故选:D【点睛】本小题主要考查线面平行的有关性质,考查棱柱的体积计算,考查空间想象能力,考查分析与解决问题的能力,属于中档题.3、C【解析】

根据,得到,利用余弦定理,得到关于的方程,从而得到的值,得到的周长.【详解】在中,由正弦定理因为,所以因为,,所以由余弦定理得即,解得,所以所以的周长为.故选C.【点睛】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.4、D【解析】

利用作差法对每一个选项逐一判断分析.【详解】选项A,所以a≥b,所以该选项错误;选项B,,符合不能确定,所以该选项错误;选项C,,符合不能确定,所以该选项错误;选项D,,所以,所以该选项正确.故选D【点睛】本题主要考查实数大小的比较,意在考查学生对该知识的理解掌握水平和分析推理能力.5、D【解析】

直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.6、C【解析】

由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.7、C【解析】

根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.8、A【解析】

根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、B【解析】

利用等式的性质或特殊值法来判断各选项中不等式的正误.【详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【点睛】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.10、C【解析】

利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的内角和定理求出角A【详解】由正弦定理得bsinB=∵b<c,则B<C,所以,B=45∘,由三角形的内角和定理得故选:C.【点睛】本题考查利用正弦定理解三角形,也考查了三角形内角和定理的应用,在解题时要注意正弦值所对的角有可能有两角,可以利用大边对大角定理或两角之和小于180∘二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.考点:三角恒等变换.12、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.13、【解析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.14、【解析】

直接利用正弦定理和三角函数关系式的变换的应用求出结果.【详解】由正弦定理,结合可得,即,即,从而.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.15、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.16、【解析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先将函数化简整理,得到,根据,得到,根据正弦函数的性质,即可得出结果;(2)令,得到或,根据,,得出,,求出,根据正定理,即可得出结果.【详解】(1)因为,所以,因此;故函数在区间上的最大值;(2)因为,由(1),令,所以或,解得:或,因为,所以,,因此,由正弦定理可得:.【点睛】本题主要考查求正弦型复合函数在给定区间的最值,以及正弦定理的应用,熟记正弦函数的性质,以及正弦定理即可,属于常考题型.18、(1);(2)见解析【解析】

(1)设公差为,由,可得解得,,从而可得结果;(2)由(1),,则有,则,利用裂项相消法求解即可.【详解】(1)设公差为d,由题解得,.所以.(2)由(1),,则有.则.所以.【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19、(1)cos(α+β)=2【解析】

(1)根据向量数列积的坐标运算,化简整理得到5cos(2)根据题中条件求出cosα=310再由cos(2α+β)=【详解】解:(1)因为a=(所以a⋅=5因为a⋅b=2,所以5(2)因为0<α<π2,因为0<α<β<π2,所以因为cos(α+β)=2所以cos因为0<α<β<π2,所以0<2α+β<【点睛】本题主要考查三角恒等变换,熟记两角和的余弦公式即可,属于常考题型.20、(1);(2).【解析】

(1)应用正弦的二倍角公式结合正弦定理可得,从而得.(2)用余弦定理求得,再由三角形面积公式可得三角形面积.【详解】(1)因为,由正弦定理,因为,,所以.因为,所以.(2)因为,,,由余弦定理得,解得或,均适合题.当时,的面积为.当时,的面积为.【点睛】本题考查二倍角公式,正弦定理,余弦定理,考查三角形面积公式.三角形中可用公式很多,关键是确定先用哪个公式,再用哪个公式,象本题第(2)小题选用余弦定理求出,然后可直接求出三角形面积,解法简捷.21、(1)见解析;(2)【解析】

(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【详解】(1)因为四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论