2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省乐清市第二中学高一数学第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.2.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形3.函数的最大值为()A. B. C. D.4.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交5.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年6.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD7.棉花的纤维长度是棉花质量的重要指标.在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A.这批棉花的纤维长度不是特别均匀B.有一部分棉花的纤维长度比较短C.有超过一半的棉花纤维长度能达到以上D.这批棉花有可能混进了一些次品8.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.319.若程序框图如图所示,则该程序运行后输出k的值是()A.5 B.6 C.7 D.810.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc2二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是等比数列,公比为,且,,则_________.12.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.13.直线的倾斜角为_____________14.已知数列的通项公式为,则该数列的前1025项的和___________.15.________.16.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.18.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.19.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.20.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.21.已知函数.(1)求的值;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.2、C【解析】

由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【详解】因为,,所以,,即,.故选:C.【点睛】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.3、D【解析】

函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.4、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.5、C【解析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】

在正方体内结合线面关系证明线面垂直,继而得到线线垂直【详解】,平面,平面,则平面又因为平面则故选D【点睛】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果7、C【解析】

根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为:棉花纤维长度达到以上的不超过一半不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.8、A【解析】

直接利用等比数列前n项和公式求.【详解】由题得.故选A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.9、A【解析】试题分析:第一次循环运算:;第二次:;第三次:;第四次:;第五次:,这时符合条件输出,故选A.考点:算法初步.10、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.12、【解析】

根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.13、【解析】

先求得直线的斜率,由此求得对应的倾斜角.【详解】依题意可知,直线的斜率为,故倾斜角为.故答案为:【点睛】本小题主要考查直线斜率和倾斜角的计算,属于基础题.14、2039【解析】

根据所给分段函数,依次列举出当时的值,即可求得的值.【详解】当时,,当时,,,共1个2.当时,,,共3个2.当时,,,共7个2.当时,,,共15个2.当时,,,共31个2.当时,,,共63个2.当时,,,共127个2.当时,,,共255个2.当时,,,共511个2.当时,,,共1个2.所以由以上可知故答案为:2039【点睛】本题考查了分段函数的应用,由所给式子列举出各个项,即可求和,属于中档题.15、【解析】

直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.16、【解析】

设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【点睛】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.18、(1),;(2).【解析】

(1)根据定义域和对称性即可得出的值,求出的解的个数,利用定理得出所有根的和;(2)令,则为偶函数,于是的唯一零点为,于是,即可解出的值.【详解】解:(1)在上的图象关于直线对称,,令得,,即,.在上有7个零点,方程的所以根之和为.(2)令,则,是偶函数,的图象关于轴对称,即关于直线对称,只有1解,的唯一解为,即,,解得.【点睛】本题考查了函数零点与函数图象对称性的关系,属于基础题.19、(1)(2)的最小值为,此时.【解析】

通过倍角公式,把化成标准形式,研究函数的相关性质(周期性,单调性,奇偶性,对称性,最值及最值相对于的变量),从而本题能顺利完成【详解】(1)因为.所以函数的最小正周期为.(2)当时,,此时,,,所以的最小值为,此时.【点睛】该类型考题关键是将化成性质,只有这样,我们才能很好的去研究他的性质.20、(1)或,(2)点P坐标为或.【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论