福建省福州市长乐高级中学2024届高一下数学期末检测试题含解析_第1页
福建省福州市长乐高级中学2024届高一下数学期末检测试题含解析_第2页
福建省福州市长乐高级中学2024届高一下数学期末检测试题含解析_第3页
福建省福州市长乐高级中学2024届高一下数学期末检测试题含解析_第4页
福建省福州市长乐高级中学2024届高一下数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市长乐高级中学2024届高一下数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.92.若()A. B. C. D.3.已知数列满足,,则()A.1024 B.2048 C.1023 D.20474.已知数列满足,,,则的值为()A.12 B.15 C.39 D.425.已知角的终边经过点,则A. B. C. D.6.若是等差数列,则下列数列中也成等差数列的是()A. B. C. D.7.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3608.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.9.已知,则的最小值为()A.2 B.0 C.-2 D.-410.在正项等比数列中,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,其中,,那么________12.设数列满足,且,则数列的前n项和_______________.13.函数的图像可由函数的图像至少向右平移________个单位长度得到.14.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.15.不等式的解集为_____________________。16.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.19.在海上进行工程建设时,一般需要在工地某处设置警戒水域;现有一海上作业工地记为点,在一个特定时段内,以点为中心的1海里以内海域被设为警戒水域,点正北海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距10海里的位置,经过12分钟又测得该船已行驶到点北偏东且与点相距海里的位置.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.试判断它是否会进入警戒水域(点与船的距离小于1海里即为进入警戒水域),并说明理由.20.某质检机构检测某产品的质量是否合格,在甲、乙两厂匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图).(1)该质检机构采用了哪种抽样方法抽取的产品?根据样本数据,求甲、乙两厂产品质量的平均数和中位数;(2)若从甲厂6件样品中随机抽取两件.①列举出所有可能的抽取结果;②记它们的质量分别是克,克,求的概率.21.在中,已知点,边上的中线所在直线的方程为,边上的高所在直线的方程为.(1)求直线的方程;(2)求点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【点睛】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.2、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.3、C【解析】

根据叠加法求结果.【详解】因为,所以,因此,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4、B【解析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.5、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.6、C【解析】

根据等差数列的定义,只需任意相邻的后一项与前一项的差为定值即可.【详解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:==与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D:当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C【点睛】本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.7、A【解析】

根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。8、D【解析】

找出直线与PQ相交的两种临界情况,求斜率即可.【详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【点睛】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.9、D【解析】

根据不等式组画出可行域,借助图像得到最值.【详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。10、D【解析】

结合对数的运算,得到,即可求解.【详解】由题意,在正项等比数列中,,则.故选:D.【点睛】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由已知数列递推式可得数列是以为首项,以为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由,得,,则数列是以为首项,以为公比的等比数列,.故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.12、【解析】令13、【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.14、【解析】

圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【点睛】此题考察圆柱侧面积公式,属于基础题目.15、或【解析】

利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【详解】由,或,所以或,不等式的解集为或.【点睛】本题考查解一元二次不等式,考查计算能力,属于基本题.16、【解析】

先由题意得到,根据题意求出的最大值,即可得出结果.【详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【点睛】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)∠A=(2)AC边上的高为【解析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得边上的高.详解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中,∵sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.18、(1);(2)【解析】

(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象和性质的应用问题,属于基础题.19、(1)海里/小时;(2)该船不改变航行方向则会进入警戒水域,理由见解析.【解析】

(1)建立直角坐标系,首先求出位置与位置的距离,然后除以经过的时间即可求出船的航行速度;(2)求出位置与位置所在直线方程,求出位置与直线的距离与1海里对比即可.【详解】(1)如图建立平面直角坐标系:设一个单位长度为1海里,则坐标中,,,,再由方位角可求得:,,所以,又因为12分钟=0.2小时,则(海里/小时),所以该船行驶的速度为海里/小时;(2)直线的斜率为,所以直线的方程为:,即,所以点到直线的距离为,即该船不改变航行方向行驶时离点的距离小于1海里,所以若该船不改变航行方向则会进入警戒水域.【点睛】本题主要考查了直角坐标系中两点间距离的计算,直线与圆的位置关系,属于一般题.20、(1)系统抽样;乙厂产品质量的平均数,乙厂质量的中位数是113;甲厂质量的平均数,甲厂质量的中位数是113(2)①详见解析②【解析】

(1)根据抽样方式即可确定抽样方法;根据茎叶图中的数据,即可分别求得两组的平均数与中位数;(2)由甲厂的样品数据,即可由列举法得所有可能;根据列举的数据,即可得满足的情况,即可求得复合要求的概率.【详解】(1)由题意该质检机构抽取产品采用的抽样方法为系统抽样,甲厂质量的平均数,甲厂质量的中位数是113,乙厂产品质量的平均数,乙厂质量的中位数是113.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论