2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷含解析_第1页
2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷含解析_第2页
2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷含解析_第3页
2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷含解析_第4页
2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省西安市师大附中达标名校初中数学毕业考试模拟冲刺卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.下列交通标志是中心对称图形的为()A. B. C. D.2.下列各式计算正确的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b23.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()A. B. C. D.4.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为()A.+=18 B.=18C.+=18 D.=185.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣56.﹣18的倒数是()A.18 B.﹣18 C.- D.7.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.8.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°9.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.1210.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为()A. B. C. D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:a3b+2a2b2+ab3=_____.12.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.14.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.15.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.16.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.18.(8分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=,请求出AC的长.19.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.20.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.21.(8分)如图,是等腰三角形,,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.22.(10分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).23.(12分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.24.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;

B、是中心对称的图形,但不是交通标志,不符合题意;

C、属于轴对称图形,属于中心对称的图形,符合题意;

D、不是中心对称的图形,不合题意.

故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.2、C【解析】

根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A.a+3a=4a,故不正确;B.(–a2)3=(-a)6,故不正确;C.a3·a4=a7,故正确;D.(a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.3、A【解析】

一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.4、B【解析】

根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用.解题关键点:根据时间关系,列出分式方程.5、A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.6、C【解析】

根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-18=1,∴﹣18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7、D【解析】

根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.8、C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.9、D【解析】

根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.10、A【解析】

首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.二、填空题(本大题共6个小题,每小题3分,共18分)11、ab(a+b)1.【解析】

a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.故答案为ab(a+b)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12、【解析】∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为,故答案为:.13、(,)【解析】

由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.14、1【解析】试题分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理15、k<1【解析】

根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=22解得:k<1.故答案为:k<1.【点睛】熟知“在一元二次方程ax2+bx+c=0(a≠0)16、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.三、解答题(共8题,共72分)17、(1)详见解析;(2)详见解析.【解析】

(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得∠CDF=90°,则CD⊥DF;(2)应先找到BC的一半,证明BC的一半和CD相等即可.【详解】证明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)过F作FG⊥BC于点G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G为BC中点,∵在△FGC和△DFC中,∴△FGC≌△DFC(ASA),∴∴BC=2CD.【点睛】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.18、(1)证明见解析;(2)AC=4.【解析】

(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可.【详解】(1)连接.∵射线切于点,.,,,,,由圆周角定理得:,;(2)由(1)可知:,,,,,设的半径为,则,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.19、(1)OE=;(2)阴影部分的面积为【解析】

(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt△COE与Rt△AFE中,,∴△COE≌△AFE,∴阴影部分的面积=扇形FOC的面积,∵S扇形FOC==π.∴阴影部分的面积为π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.20、(1);(2)(,0)或【解析】

(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=.(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴|x+4|•3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或.21、(1)作图见解析(2)为等腰三角形【解析】

(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,∵∴是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.22、AB≈3.93m.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论