2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题含解析_第1页
2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题含解析_第2页
2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题含解析_第3页
2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题含解析_第4页
2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古通辽市科左后旗甘旗卡第二高级中学高一下数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.252.已知函数,若存在实数,满足,则实数的取值范围为(

)A. B.C. D.3.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.124.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个5.已知数列为等比数列,且,则()A. B. C. D.6.已知,则的最小值为A.3 B.4 C.5 D.67.如果成等差数列,成等比数列,那么等于()A. B. C. D.8.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.19.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.10.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.12.设,则函数是__________函数(奇偶性).13.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.14.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________15.已知x、y、z∈R,且,则的最小值为.16.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,为了测量河对岸、两点的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、.并测量得到以下数据,,,,,米,米.求、两点的距离.18.已知函数(1)求函数的最大值以及取得最大值时的集合;(2)若函数的递减区间.19.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.20.将函数的图像向右平移1个单位,得到函数的图像.(1)求的单调递增区间;(3)设为坐标原点,直线与函数的图像自左至右相交于点,,,求的值.21.设等比数列的前n项和为.已知,,求和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

将|a+b2、A【解析】

根据题意可知方程有解即可,代入解析式化简后,利用基本不等式得出,再利用分类讨论思想即可求出实数的取值范围.【详解】由题意知,方程有解,则,化简得,即,因为,所以,当时,化简得,解得;当时,化简得,解得,综上所述的取值范围为.故答案为:A【点睛】本题主要考查了函数的基本性质的应用,以及利用基本不等式求最值的应用,其中解答中利用题设条件化简,合理利用基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.3、C【解析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】①;②;③;④,所以正确的为①②,选B.5、A【解析】

根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.6、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D8、A【解析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【点睛】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.9、B【解析】

根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.10、C【解析】

画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.12、偶【解析】

利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.13、1【解析】

由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.14、【解析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.15、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式16、【解析】

先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、米【解析】

在中,求出,利用正弦定理求出,然后在中利用锐角三角函数定义求出,最后在中,利用余弦定理求出.【详解】由题意可知,在中,,由正弦定理得,所以米,在中,米,在中,由余弦定理得,所以,米.【点睛】本题考查利用正弦、余弦定理解三角形应用题,要将实际问题转化为三角形的问题,并结合已知元素类型选择正弦、余弦定理解三角形,考查分析问题和解决问题的能力,属于中等题.18、(1)当时,的最大值为(2)【解析】

(1)化简根据正弦函数的最值即可解决,(2)根据(1)的化简结果,根据正弦函数的单调性即可解决。【详解】解:(1)因为,所以所以的最大值为,此时(2)由(1)得得即减区间为【点睛】本题主要考查了正弦函数的最值与单调性,属于基础题。19、(1).(2)【解析】

(1)根据条件列出等式,求解公比后即可求解出通项公式;(2)错位相减法求和,注意对于“错位”的理解.【详解】解:(1)由,得,则∴,∴数列的通项公式为.(2)由,∴,①,②①②,得,∴.【点睛】本题考查等比数列通项和求和,难度较易.对于等差乘以等比的形式的数列,求和注意选用错位相减法.20、(1)();(2)【解析】

(1)通过“左加右减”可得到函数的解析式,从而求得的单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论