2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省南昌市新建二中高一数学第二学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球,2个白球,乙袋中有2个红球,3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A. B. C. D.3.如图,在三角形中,点是边上靠近的三等分点,则()A. B.C. D.4.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.5.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则()A. B. C. D.6.函数,当时函数取得最大值,则()A. B. C. D.7.已知等差数列和的前项和分别为和,.若,则的取值集合为()A. B.C. D.8.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或9.设集合,集合,则()A. B. C. D.10.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.12.的值为__________.13.已知数列中,其中,,那么________14.设,其中,则的值为________.15.(理)已知函数,若对恒成立,则的取值范围为.16.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.18.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.19.设函数,定义域为.(1)求函数的最小正周期,并求出其单调递减区间;(2)求关于的方程的解集.20.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.21.已知,,与的夹角为,,,当实数为何值时,(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,对应点,在第四象限.2、D【解析】

现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,由此能求出两球不同颜色的概率.【详解】甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,则两球不同颜色的概率为.故选.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于中档题.3、A【解析】

利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】因为点是边上靠近的三等分点,所以,所以,故选:A.【点睛】本题考查向量的加、减法以及数乘运算,需要学生熟练掌握三角形法则和共线定理.4、A【解析】

代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.5、D【解析】

由题意得到,再由两角差的余弦及同角三角函数的基本关系式化简求解.【详解】解:∵角与角均以Ox为始边,它们的终边关于y轴对称,

∴,

故选:D.【点睛】本题考查了两角差的余弦公式的应用,是基础题.6、A【解析】

根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【点睛】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】

首先根据即可得出,再根据前n项的公式计算出即可。【详解】,选D.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,属于难题.等差数列的常用性质有:(1)通项公式的推广:

(2)若

为等差数列,

;(3)若是等差数列,公差为,

,则是公差

的等差数列;8、C【解析】

由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】

已知集合A,B,取交集即可得到答案.【详解】集合,集合,则故选B【点睛】本题考查集合的交集运算,属于简单题.10、B【解析】

由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.12、【解析】

直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.13、1【解析】

由已知数列递推式可得数列是以为首项,以为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由,得,,则数列是以为首项,以为公比的等比数列,.故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.14、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.15、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.16、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)直线RS恒过定点【解析】

(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,则,在以为直径的圆上,设为,则以为直径的圆的方程为:,整理可得,与圆:联立可得:,即,令,解得,故无论取何值时,直线恒过定点【点睛】本题考查圆的方程,考查已知圆外一点求切线方程,考查直线恒过定点问题18、(1);(2).【解析】

(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【点睛】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.19、(1)最小正周期为,单调递减区间为;(2).【解析】

(1)利用两角差的余弦公式、二倍角降幂公式以及辅助角公式将函数的解析式化简为,由周期公式可得出函数的最小正周期,由,解出的范围得出函数的单调递减区间;(2)由,得出,解出该方程可得出结果.【详解】(1),所以,函数的最小正周期为,由,得,因此,函数的单调递减区间为;(2)令,得,或,解得或,因此,关于的方程的解集为.【点睛】本题考查三角函数基本性质的求解,解题时要将三角函数解析式利用三角恒等变换思想进行化简,然后再利用相应公式或图象进行求解,考查分析问题和运算求解能力,属于中等题.20、(1)(2)【解析】

(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论