![2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M00/33/2A/wKhkGWZp07KAc5kuAAIQ8P6yn_k078.jpg)
![2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M00/33/2A/wKhkGWZp07KAc5kuAAIQ8P6yn_k0782.jpg)
![2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M00/33/2A/wKhkGWZp07KAc5kuAAIQ8P6yn_k0783.jpg)
![2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M00/33/2A/wKhkGWZp07KAc5kuAAIQ8P6yn_k0784.jpg)
![2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M00/33/2A/wKhkGWZp07KAc5kuAAIQ8P6yn_k0785.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省岳阳市一中高一数学第二学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.2.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.3.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.74.已知半圆C:(),A、B分别为半圆C与x轴的左、右交点,直线m过点B且与x轴垂直,点P在直线m上,纵坐标为t,若在半圆C上存在点Q使,则t的取值范围是()A. B.C. D.5.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.726.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.7.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形8.在中,,,则()A.或 B. C. D.9.若,则下列结论成立的是()A. B.C.的最小值为2 D.10.在中,分别为角的对边,若,且,则边=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________.12.已知等边,为中点,若点是所在平面上一点,且满足,则__________.13.在△ABC中,sin2A=sin14.在数列中,,,若,则的前项和取得最大值时的值为__________.15.已知x、y满足约束条件,则的最小值为________.16.数列满足:,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.18.如图,在平面直角坐标系中,已知圆:,点,过点的直线与圆交于不同的两点(不在y轴上).(1)若直线的斜率为3,求的长度;(2)设直线的斜率分别为,求证:为定值,并求出该定值;(3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.19.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.20.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.21.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.2、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.3、D【解析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.4、A【解析】
根据题意,设PQ与x轴交于点T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x轴上方、下方和x轴上三种情况讨论,分析|BT|的最值,即可得t的范围,综合可得答案.【详解】根据题意,设PQ与x轴交于点T,则|PB|=|t|,由于BP与x轴垂直,且∠BPQ,则在Rt△PBT中,|BT||PB||t|,当P在x轴上方时,PT与半圆有公共点Q,PT与半圆相切时,|BT|有最大值3,此时t有最大值,当P在x轴下方时,当Q与A重合时,|BT|有最大值2,|t|有最大值,则t取得最小值,t=0时,P与B重合,不符合题意,则t的取值范围为[,0)];故选A.【点睛】本题考查直线与圆方程的应用,涉及直线与圆的位置关系,属于中档题.5、B【解析】
由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6、C【解析】
根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【点睛】本小题主要考查频数分析表的阅读与应用,属于基础题.7、A【解析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【点睛】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.8、C【解析】
由正弦定理计算即可。【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。9、D【解析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【点睛】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.10、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12、0【解析】
利用向量加、减法的几何意义可得,再利用向量数量积的定义即可求解.【详解】根据向量减法的几何意义可得:,即,所以.故答案为:0【点睛】本题考查了向量的加、减法的几何意义以及向量的数量积,属于基础题.13、π【解析】
根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.14、【解析】
解法一:利用数列的递推公式,化简得,得到数列为等差数列,求得数列的通项公式,得到,,得出所以,,,,进而得到结论;解法二:化简得,令,求得,进而求得,再由,解得或,即可得到结论.【详解】解法一:因为①所以②,①②,得即,所以数列为等差数列.在①中,取,得即,又,则,所以.因此,所以,,,所以,又,所以时,取得最大值.解法二:由,得,令,则,则,即,代入得,取,得,解得,又,则,故所以,于是.由,得,解得或,又因为,,所以时,取得最大值.【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.15、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.16、【解析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据三角函数的定义,求出对应的正弦和余弦值,用正弦的和角公式即可求解;(2)根据题意,先计算出的值,再求解.【详解】(1)由三角函数的定义得,,.由角、的终边分别在第一和第二象限,得:,,所以;(2),则根据,即可得,解得:..故.【点睛】本题考查三角函数的定义,以及由向量的数量积计算模长,属基础题.18、(1);(2)见解析;(3)见解析【解析】
(1)求出圆心O到直线的距离,已知半径通过勾股定理即可算出弦长的一半,即可算出弦长。(2)设,直线的方程为,联立圆的方程通过韦达定理化简即可。(3)设点,根据,得,表示出,的关系,再联立直线和圆的方程得到,与k的关系,代入可解出k,最后再通过有两个交点判断即可求出k值。【详解】(1)由直线的斜率为3,可得直线的方程为所以圆心到直线的距离为所以(2)直线的方程为,代入圆可得方程设,则所以为定值,定值为0(3)设点,由,可得:,即,化得:由(*)及直线的方程可得:,代入上式可得:,可化为:求得:又由(*)解得:所以不符合题意,所以不存在符合条件的直线.【点睛】此题考查圆锥曲线,一般采用设而不求通过韦达定理表示,将需要求解的量用斜率k表示,起到消元的作用,计算相对复杂,属于较难题目。19、(1)证明见解析,(2)【解析】
(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.20、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生创业培训项目汇报表
- 2024幼儿中班父亲节活动方案
- 法律行业的展望
- 湖北省武汉市东西湖区2024-2025学年七年级上学期期末语文试题(解析版)
- 考研自习室申请书
- 护校队申请书范文
- 初级银行管理-银行专业初级《银行管理》押题密卷9
- 白瓷餐具项目风险评估报告
- 初级公司信贷-初级银行从业资格考试《公司信贷》高分通关卷1
- 医学院校考试题库 基础知识
- 人教版八年级数学下册《第十六章二次根式》专题复习附带答案
- MotionView-MotionSolve应用技巧与实例分析
- 碳纳米管应用研究
- 投标声明书模板
- 幼儿园幼儿园小班社会《兔奶奶生病了》
- 设备管理试题库含答案
- 2023年《反电信网络诈骗法》专题普法宣传
- 2024届武汉武昌区五校联考数学九年级第一学期期末经典试题含解析
- 诈骗控告书模板
- 热应激的防与控
- 外墙瓷砖翻新真石漆施工解决方法
评论
0/150
提交评论