




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省德宏市高一下数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知=4,=3,,则与的夹角为()A. B. C. D.2.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.3.已知向量,且,则的值为()A.1 B.3 C.1或3 D.44.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.5.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.6.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.7.已知定义域的奇函数的图像关于直线对称,且当时,,则()A. B. C. D.8.倾斜角为,在轴上的截距为的直线方程是A. B. C. D.9.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆10.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米12.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.13.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.14.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.15.设向量与向量共线,则实数等于__________.16.设,向量,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.18.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?19.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.20.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.21.已知直线的方程为.(1)求直线所过定点的坐标;(2)当时,求点关于直线的对称点的坐标;(3)为使直线不过第四象限,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由已知中,,,我们可以求出的值,进而根据数量积的夹角公式,求出,,进而得到向量与的夹角;【详解】,,,,,所以向量与的夹角为.故选C【点睛】本题主要考查平面向量的数量积运算和向量的夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.2、C【解析】
根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题3、B【解析】
先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.4、A【解析】
直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.5、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.6、A【解析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【点睛】本题考查球的体积,关键是确定球心位置求出球的半径.7、D【解析】
根据函数的图像关于直线对称可得,再结合奇函数的性质即可得出答案.【详解】解:∵函数的图像关于直线对称,∴,∴,∵奇函数满足,当时,,∴,故选:D.【点睛】本题主要考查函数的奇偶性与对称性的综合应用,属于基础题.8、D【解析】试题分析:倾斜角,直线方程截距式考点:斜截式直线方程点评:直线斜率为,在y轴上的截距为,则直线方程为,求直线方程最终结果整理为一般式方程9、D【解析】原方程即即或故原方程表示两个半圆.10、C【解析】
分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2000【解析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.12、【解析】
利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.13、①②④【解析】
由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.14、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.15、3【解析】
利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.16、【解析】从题设可得,即,应填答案.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)①9,②【解析】
(1)根据不等式的端点值是对应方程的实数根,利用根与系数的关系,得到的值;(2)①根据求的最值,可利用求最值;②利用二次函数恒成立问题求解.【详解】由已知可知,的两根是所以,解得.(2)①,当时等号成立,因为,解得时等号成立,此时的最小值是9.②在上恒成立,,又因为代入上式可得解得:.【点睛】本题考查了二次函数与一元二次方程和一元二次不等式的问题,和基本不等式求最值,属于基础题型.18、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】
(1)将已知函数化简,利用基本不等式求车流量y最大值;
(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.19、(1);(2)【解析】
(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【点睛】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确定采用错位相减法求得结果,对学生的计算和求解能力有一定要求.20、(1)或,(2),增区间为:【解析】
(1)根据得到,再根据的范围解方程即可.(2)首先根据题意得到,再根据的范围即可得到函数的最大值和单调增区间.【详解】因为,所以,即.因为,.所以或,即或.(2).因为,所以.所以,.因为,所以.令,得.因为,所以增区间为:.【点睛】本题第一问考查根据三角函数值求角,同时考查了平面向量平行的坐标运算,第二问考查了三角函数的最值和单调区间,属于中档题.21、(1);(2);(3)【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂员工培训总结(3篇)
- 针对美容师的理论考试试题及答案
- 六年级语文强化训练试题及答案
- 2025至2030年中国半联轴器数据监测研究报告
- 公务出差安全注意事项管理制度
- 2025年中国镀沙丁镍扳手市场调查研究报告
- 教师个人研修计划小学语文(16篇)
- 2025年中国自吸式变风量回风过滤器市场调查研究报告
- 2025年中国混合煤气炉配件市场调查研究报告
- 2025年中国彩照信用卡制作系统市场调查研究报告
- 天然气管道清管技术规范与操作实践考核试卷
- 金融知识与服务考核试卷
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- 高三下学期一模英语读后续写 科学课的启示 讲义
- (正式版)JTT 1499-2024 公路水运工程临时用电技术规程
- 沪科黔科版(贵州上海版)综合实践活动四年级下册第8课 趣味陶瓷DIY教学课件含微课视频
- 基金会公益慈善项目管理办法
- 2009年10月自考00567马列文论选读试题及答案含解析
- 全科医学教育中的病例讨论与分析
- 湘教版七年级数学下册 第2章 整式的乘法 单元测试卷
- 《诺亚方舟》课件
评论
0/150
提交评论