版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广西柳州市高级中学高一下数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则()A. B. C. D.2.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.3.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=04.若数列前12项的值各异,且对任意的都成立,则下列数列中可取遍前12项值的数列为()A. B. C. D.5.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.6.已知圆与圆有3条公切线,则()A. B.或 C. D.或7.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}8.过点A(3,3)且垂直于直线的直线方程为A. B. C. D.9.已知,,则等于()A. B. C. D.10.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知与的夹角为求=_____.12.已知,则的取值范围是_______;13.一个几何体的三视图如图所示(单位:m),则该几何体的体积为.14.和2的等差中项的值是______.15.直线和将单位圆分成长度相等的四段弧,则________.16.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,
记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.18.在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,,当时,求直线的方程;(3)设,是圆上任意两点,点关于轴的对称点为,若直线,分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.19.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.20.已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求实数的值.21.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用二倍角的正弦公式和与余弦公式化简可得.【详解】∵,∴,∵,所以,∴,∴.故选:A【点睛】本题考查了二倍角的正弦公式,考查了二倍角的余弦公式,属于基础题.2、D【解析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.3、C【解析】试题分析:两点关于直线对称,则,点与的中点在直线上,,那么直线的斜率等于,中点坐标为,即中点坐标为,,整理得:,故选C.考点:求直线方程4、C【解析】
根据题意可知利用除以12所得的余数分析即可.【详解】由题知若要取遍前12项值的数列,则需要数列的下标能够取得除以12后所有的余数.因为12的因数包括3,4,6,故不能除以12后取所有的余数.如除以12的余数只能取1,4,7,10的循环余数.又5不能整除12,故能够取得除以12后取所有的余数.故选:C【点睛】本题主要考查了数列下标整除与余数的问题,属于中等题型.5、A【解析】
设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【点睛】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.6、B【解析】
由两圆有3条公切线,可知两圆外切,则圆心距等于两圆半径之和,求解即可.【详解】由题意,圆与圆外切,所以,即,解得或.【点睛】本题考查了两圆外切的性质,考查了计算能力,属于基础题.7、C【解析】
根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.8、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.9、D【解析】
通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【详解】解:,又,得,即,又,且,解得,,故选:D.【点睛】本题考查三角恒等变形的化简和求值,是中档题.10、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.12、【解析】
本题首先可以根据向量的运算得出,然后等式两边同时平方并化简,得出,最后根据即可得出的取值范围.【详解】设向量与向量的夹角为,因为,所以,即,因为,所以,即,所以的取值范围是.【点睛】本题考查向量的运算以及向量的数量积的相关性质,向量的数量积公式,考查计算能力,是简单题.13、【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为.考点:本题主要考查三视图及几何体体积的计算.14、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题15、0【解析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16、【解析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)400;(2);(3)【解析】
(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.18、(1);(2);(3)见解析【解析】
(1)利用点到直线距离公式,可以求出弦心距,根据垂径定理结合勾股定理,可以求出圆的半径,进而可以求出圆的方程;(2)设出直线的截距式方程,利用圆的切线性质,得到一个方程,结合已知,又得到一个方程,两个方程联立,解方程组,即可求出直线直线的方程;(3)设,,则,,,分别求出直线与轴交点坐标、直线与轴交点坐标,求出的表达式,通过计算可得.【详解】(1)因为点到直线的距离为,所以圆的半径为,故圆的方程为.(2)设直线的方程为,即,由直线与圆相切,得,①.②由①②解得,此时直线的方程为.(3)设,,则,,,直线与轴交点坐标为,,直线与轴交点坐标为,,,为定值2.【点睛】本题考查了圆的垂径定理、圆的切线性质、勾股定理,考查了求直线方程,考查了数学运算能力.19、(1);(2)对称中心,;对称轴为【解析】
利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函数的问题;关键是能够熟练掌握整体对应的方式,结合正弦函数的性质来求解单调区间、对称轴和对称中心.20、(1)①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)【解析】
(1)不等式,可化为,分三种情况讨论,分别利用一元二次不等式的解法求解即可;(2)不等可化为,根据1和4是方程的两根,利用韦达定理列方程求解即可.【详解】(1)不等式,可化为:.①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)不等可化为:.由不等式的解集为可知,1和4是方程的两根.故有,解得.由时方程为的根为1或4,则实数的值为1.【点睛】本题主要考查一元二次不等式的解法以及分类讨论思想的应用,属于中档题..分类讨论思想的常见类型
,⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;
⑵问题中的条件是分类给出的;
⑶解题过程不能统一叙述,必须分类讨论的;
⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.21、(1)(2)【解析】
古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点(1)由题意知本题是一个古典概型,试验包含的所有事件是任取三张卡片,三张卡片上的数字全部可能的结果,可以列举出,而满足条件的事件数字之和大于7的,可以从列举出的结果中看出.(2)列举出每次抽1张,连续抽取两张全部可能的基本结果,而满足条件的事件是两次抽取中至少一次抽到数字3,从前面列举出的结果中找出来.解:(Ⅰ)设A表示事件“抽取3张卡片上的数字之和大于或等于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网保险业务2024年度合同法律适用问题探讨6篇
- 口腔诊所劳动合同书
- 妻子瘫痪与丈夫离婚协议书
- 2024年农产品采购合同6篇
- 2024版场地出租协议(个人场地)3篇
- 宅基地转让协议范本
- 三方债权债务转让协议书完整版
- 2024版居间合同:软件开发与购买协议3篇
- 2024年度二手房垫资购买合同2篇
- 二零二四年度物业服务合同标的详细描述及其管理协议3篇
- 国家开放大学《管理英语4》边学边练Unit 5-8(答案全)
- 作家普希金课件
- 封山育林工程 投标方案(技术方案)
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2024年刑法知识考试题库附参考答案【满分必刷】
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 肺功能进修总结汇报
- 《燃烧性能测试》课件-第二节 氧指数测试
- DB32/T 4446-2023 公共机构能源托管规程
- 初中英语名词单复数专项训练题目
- 碳汇经济与美丽中国智慧树知到期末考试答案2024年
评论
0/150
提交评论