版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节函数及其表示知识点一函数的基本概念1.函数的定义一般地,设A,B是
数集,如果按照某种确定的对应关系f,使对于集合A中的
一个数x,在集合B中都有
确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.非空任意唯一2.函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的
;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的
.3.函数的三要素:
、
和对应关系.4.表示函数的常用方法:
、
和解析式法.函数问题允许多对一,但不允许一对多.与x轴垂直的直线和一个函数的图象至多有1个交点.
定义域值域定义域值域列表法图象法1.(多选题)下列图象中,能表示函数的图象的是(
)ABC解析:显然,对于选项D,当x取一个正值时,有两个y值与之对应,不符合函数的定义.C知识点二分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不同的
,这种函数称为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的
,值域是各段值域的
.对应法则并集并集
•
温馨提醒
•
二级结论分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.必明易错1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.C答案:-3题型一函数的定义域自主探究
答案:[-1,2]
求函数f(x)的定义域时,要使解析式有意义.具体如下:(1)分式中,分母不为0;(2)偶次方根中,被开方数非负;(3)对于y=x0,要求x≠0,负指数的底数不为0.题型三分段函数多维探究高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小.常见的命题角度有:(1)分段函数的函数求值问题;(2)分段函数的自变量求值问题;(3)分段函数与不等式问题.求分段函数的函数值时,应根据所给自变量的取值选择相应段的解析式求解,有时各段交替使用求值求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应段上自变量的值,切记要代入检验.CC(一)数学抽象——函数的新定义问题解决与函数有关的新定义问题(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数等)为背景定义的,可以通过阅读材料,联想和类比、拆分或构造,将新函数转化为我们熟知的基本初等函数进行求解.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x,y取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些新定义型函数可看成是由两个已知函数构造而成的.AD
本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.
解决分段函数问题的关键是“对号入座”,即根据自变量的取值范围,准确确定相应的对应法则,代入相应的函数解析式,转化为一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防安全应急预案方案
- 电力方涵施工材料管理方案
- 工地承包免责协议书(2篇)
- 徐州2024年01版小学五年级上册英语第6单元期中试卷
- 2024年统编版小学四年级英语第3单元期末试卷
- 如何引导深度学习培养学生的思维品质
- 学校出资办理从业资格证协议书(2篇)
- 食品安全管理全过程跟踪审计方案
- 智能科技企业后勤管理制度创新
- 少先队暑期社会实践活动方案
- 设备试机(验收)报告
- 石材厂设计方案范本
- 租赁机械设备施工方案
- GB/T 43153-2023居家养老上门服务基本规范
- 《中华商业文化》第四章
- 服务与服务意识培训课件
- 第5课《秋天的怀念》群文教学设计 统编版语文七年级上册
- 冬季安全生产特点及预防措施
- 视频短片制作合同范本
- 结构加固改造之整体结构加固教学课件
- 高中数学-3.3 幂函数教学课件设计
评论
0/150
提交评论