版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣州市会昌中学宁师中学数学高一下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等差数列an的前n项和为Sn,若a1>0,A.S10 B.S11 C.S2.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o3.已知,则的最小值为()A.2 B.0 C.-2 D.-44.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.5.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定6.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高7.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.88.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D9.在ΔABC中,角A、B、C所对的边分别为a、b、c,A=45°,B=30°,b=2,则a=()A.2 B.63 C.2210.已知,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设表示不超过的最大整数,则________12.已知向量,且,则___________.13.直线的倾斜角的大小是_________.14.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。15._________________;16.设三棱锥满足,,则该三棱锥的体积的最大值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列与等比数列满足,,且.(1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.18.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.19.设等比数列的前n项和为.已知,,求和.20.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S21.如图,在三棱柱中,、分别是棱,的中点,求证:(1)平面;(2)平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:利用等差数列的通项公式,化简求得a20+a详解:在等差数列an中,a则3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0点睛:本题考查了等差数列的通项公式,及等差数列的前n项和Sn的性质,其中解答中根据等差数列的通项公式,化简求得a20+2、C【解析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.3、D【解析】
根据不等式组画出可行域,借助图像得到最值.【详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。4、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.5、C【解析】
求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.6、C【解析】
根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.7、B【解析】
由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【点睛】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.8、A【解析】
根据向量共线定理进行判断即可.【详解】因为,且,有公共点B,所以A,B,D三点共线.故选:A.【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.9、C【解析】
利用正弦定理得到答案.【详解】asin故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.10、C【解析】
根据辅助角公式即可.【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.12、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).13、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.14、乙【解析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.15、1【解析】
利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.16、【解析】
取中点,连,可证平面,,要使最大,只需求最大值,即可求解.【详解】取中点,连,所以,,,平面,平面,设中边上的高为,,当且仅当时,取等号.故答案为:.【点睛】本题考查锥体的体积计算,考查线面垂直的判定,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2)存在正整数,,证明见解析【解析】
(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解】(1)解:设等差数列与等比数列的公差与公比分别为,,则,解得,于是,,.(2)解:由,即,①,②①②得:,从而得.令,得,显然、所以数列是递减数列,于是,对于数列,当为奇数时,即,,,…为递减数列,最大项为,最小项大于;当为偶数时,即,,,…为递增数列,最小项为,最大项大于零且小于,那么数列的最小项为.故存在正整数,使恒成立.【点睛】本题考查等差等比数列,利用错位相减法求差比数列的前n项和,并讨论其最值,属于难题。18、(1)(2)(3)【解析】
(1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;(2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;(3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.【详解】(1)因为直线的倾斜角为45°,所以斜率,代入点斜式,即.(2)因为直线在轴上的截距是5,所以设直线方程为:,代入点得,故直线方程为.(3)设所求直线方程为则,即,解之得,,所以直线方程为,即.【点睛】本题考查了利用点斜式、截距式、斜截式求直线方程,正确选择方程的形式是解题的关键.19、或.【解析】
试题解析:(1)解得或即或(2)当时,当时,考点:本题考查求通项及求和点评:解决本题的关键是利用基本量法解题20、(1)证明见解析;(2)S【解析】
(1)计算得到bn+1bn(2)根据(1)知an【详解】(1)因为bn+1b所以数列bn(2)因为bn=aSn【点睛】本题考查了等比数列的证明,分组求和,意在考查学生的计算能力和对于数列方法的灵活运用.21、(1)见证明;(2)见证明【解析】
(1)设与的交点为,连结,证明,再由线面平行的判定可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 29498-2024木门窗通用技术要求
- 2024年度汽车检测仪租赁合同示范文本2篇
- 中班活动教案教育课件
- 2024年度版权许可合同的许可使用期限与条件
- 2024年度文化艺术节赞助合同:某艺术节的赞助权益
- 2024年度供应链管理与优化合作合同
- 2024年度版权许可使用合同标的为一部电影
- 《齿轮传动K系数》课件
- 2024年度电视剧导演聘请合同3篇
- 2024年度企业培训与人才交流服务合同
- 句子语法结构(单句)(课堂PPT)
- 现代女性如何兼顾事业和家庭的平衡PPT课件
- (工艺流程)铝合金熔炼工艺流程和操作工艺
- 幼儿园幼儿发展评价表93195
- 退休“中人”待遇核算—机关事业单位养老保险待遇计发工作培训(全省模板)课件
- 动物的采食量 (2)
- 第六节汽轮机级内损失及级效率
- (高清版)外墙饰面砖工程施工及验收规程JGJ126-2015
- 国家职业技能鉴定焊工
- 工程竣工验收备案表
- 串并联电路中电流的规律PPT课件
评论
0/150
提交评论