




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市普陀区市级名校2024年高一下数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列的前n项和为,已知,则A. B. C. D.2.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件3.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5等于()A.10 B.12 C.15 D.304.若,且,则的值为A. B. C. D.5.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则6.若,且,则xy的最大值为()A. B. C. D.7.若,且,恒成立,则实数的取值范围是()A. B.C. D.8.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.9.已知函数f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,1610.一个钟表的分针长为,经过分钟,分针扫过图形的面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)12.已知点,,若向量,则向量______.13.某球的体积与表面积的数值相等,则球的半径是14.的值为__________.15.和的等差中项为__________.16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.18.如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.(1)求观测站到港口的距离;(2)求海轮的航行速度.19.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;20.已知扇形的半径为3,面积为9,则该扇形的弧长为___________.21.已知:(,为常数).(1)若,求的最小正周期;(2)若在,上最大值与最小值之和为3,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设公比为q,则,选A.2、C【解析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件3、C【解析】因为等差数列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故选C.4、A【解析】
利用诱导公式求得sinα的值,再利用同角三角函数的基本关系求得cosα,再利用二倍角公式,求得sin2α的值.【详解】解:,且,,则,故选A.【点睛】本题主要考查利用诱导公式、同角三角函数的基本关系,二倍角公式进行化简三角函数式,属于基础题.5、D【解析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.6、D【解析】
利用基本不等式可直接求得结果.【详解】(当且仅当时取等号)的最大值为故选:【点睛】本题考查利用基本不等式求解积的最大值的问题,属于基础题.7、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.8、B【解析】
取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【点睛】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.9、B【解析】
由题得ωπ-π3<ωx-【详解】因为π<x≤2π,ω>0,所以ωπ-π因为fx在区间(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因为k+1所以-4因为k∈Z,所以k=-1或k=0.当k=-1时,0<ω<16;当k=0时,故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.10、B【解析】
分析题意可知分针扫过图形是扇形,要求这个扇形的面积需要得到扇形的圆心角和半径,再代入扇形的面积公式计算即可.【详解】经过35分钟,分针走了7个大格,每个大格则分钟走过的度数为钟表的分针长为10分针扫过图形的面积是故选【点睛】本题主要考查了求扇形面积,结合公式需要求出扇形的圆心角和半径,较为基础二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.12、【解析】
通过向量的加减运算即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,难度很小.13、3【解析】试题分析:,解得.考点:球的体积和表面积14、【解析】
由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.15、【解析】
设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.16、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【点睛】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】
(1)设的公差为,则由已知条件得,.化简得解得故通项公式,即.(2)由(1)得.设的公比为,则,从而.故的前项和.18、(1)海里;(2)速度为海里/小时【解析】
(1)由已知可知,所以在中,运用余弦定理易得OA的长.(2)因为C航行1小时到达C,所以知道OC的长即可,即求BC的长.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【详解】(1)因为海伦的速度为20海里/小时,所以1小时后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度为海里/小时【点睛】三角形中一般已知三个条件可求其他条件,用到的工具一般是余弦定理或者正弦定理.19、(1)(2)或【解析】
(1)直接利用点到直线的距离公式求出半径,即可得出答案。(2)设出直线,求出圆心到直线的距离,利用半弦长直角三角形解出即可。【详解】解(1),所以圆的方程为(2)由题意,可设直线的方程为则圆心到直线的距离则,即所以直线的方程为或【点睛】本题考查直线与圆的位置关系,属于基础题。20、6【解析】
直接利用扇形的面积公式,即可得到本题答案.【详解】因为扇形的半径,扇形的面积,由,得,所以该扇形的弧长为6.故答案为:6【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年常州信息职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年03月上半年浙江舟山市普陀区部分事业单位公开招聘工作人员20人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年山西林业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年山东文化产业职业学院高职单招(数学)历年真题考点含答案解析
- 2025年宿迁职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宝鸡职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- IP基础知识课件下载
- 下肢静脉血栓用药护理
- 2025年天津滨海汽车工程职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年天津工程职业技术学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年职业指导师专业能力测试卷:职业指导服务与心理咨询
- 学校安全管理制度汇编
- 2025-2030中国化妆棉行业市场深度调研及发展策略研究报告
- 早产儿护理的试题及答案
- 信息技术公司成本控制措施
- 贸易安全培训
- 口腔科感染控制策略与措施实施指南
- NPI培训资料NEW课件
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 2025新北师大版英语七年级下单词表
- 动脉瘤病人的观察及护理
评论
0/150
提交评论