




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省商洛中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥2.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.63.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD4.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、65.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.6.下列四个图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110° B.115° C.120° D.130°8.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.89.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次10.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.12.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.15.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.16.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.三、解答题(共8题,共72分)17.(8分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.18.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.19.(8分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.20.(8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.21.(8分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)22.(10分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.23.(12分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.24.如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=12,求DN
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.2、C【解析】
利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.【详解】解:∵在□ABCD中,对角线AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中点,∴==,∴BF=2,FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.3、D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于BOC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.4、D【解析】
5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.5、B【解析】
设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.6、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.8、C【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.9、D【解析】
A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.10、B【解析】
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率.故答案为.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.12、2.58×1【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258000=2.58×1.13、1.【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.14、2【解析】
过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3,求得DF=BF−BD=,根据勾股定理即可得到结论.【详解】解:过点E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中点,∴BD=2,∴DF=BF−BD,∴DE===2.故答案为2.【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.15、36【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:m+n=10+2=12也就是:当m+n=12时,m·n最大是多少?这就容易了:m·n<=36所以m·n的最大值就是3616、【解析】
解:根据题意可得:列表如下红1红2黄1黄2黄3红1红1,红2红1,黄1红1,黄2红1,黄3红2红2,红1红2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为.【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.三、解答题(共8题,共72分)17、(1)且;(2),.【解析】
(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.【详解】(1)∵.解得且.(2)∵为正整数,∴.∴原方程为.解得,.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.18、(1)0.2;(2)答案见解析;(3)300【解析】
第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.19、50千米/小时.【解析】
根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.【详解】解:设货车的速度为x千米/小时,依题意得:解:根据题意,得
.
解得:x=50经检验x=50是原方程的解.答:货车的速度为50千米/小时.【点睛】本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.20、(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.21、【解析】
作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.【详解】如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,设BC=BD=AD=x,则CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的长.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22、(1)1;(2)【解析】(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.23、(1)证明:∵ABCD是平行四边形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】证明:在□ABCD中∵AB∥CD∴∠ABE=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2029年中国旅游网站行业市场深度评估及投资战略规划报告
- 塑料洁具配件项目投资可行性研究分析报告(2024-2030版)
- 2020-2025年中国升降台铣床行业市场调查研究及投资战略咨询报告
- 制作高跷活动方案
- 冬奥会美术教育活动方案
- 初中捡垃圾活动方案
- 劳动节公司装饰活动方案
- 农产品公司开业活动方案
- 公司经营计划策划方案
- 公司纠错活动方案
- 全套QHSE管理体系文件
- MES业务蓝图(合并版)-V1
- 炼钢-精炼-连铸过程钢水页PPT课件
- 安全知识进校园宣传课件——XX小学
- 剖宫产术后再次妊娠阴道分娩管理的专家共识
- 《扫除道》樊登读书文字版
- 教学演示文稿,建筑企业科技创新方法讲座()
- 装饰工程材料清单
- 中国传统节日文化中现代德育价值的研究课题结题报告
- 肺动脉导管监测的参数及意义
- 职称评审申报系统PPT课件
评论
0/150
提交评论