甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷含解析_第1页
甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷含解析_第2页
甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷含解析_第3页
甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷含解析_第4页
甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳市重点中学2024年高三第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q2.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.3.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.5.执行如图所示的程序框图,当输出的时,则输入的的值为()A.-2 B.-1 C. D.6.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.7.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.8.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.9.已知集合,,则A. B.C. D.10.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°11.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.12.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值是______.14.已知函数,若的最小值为,则实数的取值范围是_________15.能说明“在数列中,若对于任意的,,则为递增数列”为假命题的一个等差数列是______.(写出数列的通项公式)16.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.18.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.19.(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列.定义随机变量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.20.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求的极坐标方程和的直角坐标方程;(Ⅱ)设分别交于两点(与原点不重合),求的最小值.21.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.22.(10分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。2、D【解析】

根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.3、B【解析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。4、C【解析】

利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.5、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.6、D【解析】

利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.7、B【解析】

求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.8、D【解析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.9、D【解析】

因为,,所以,,故选D.10、C【解析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.11、B【解析】

由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.12、C【解析】

根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】

做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14、【解析】

,可得在时,最小值为,时,要使得最小值为,则对称轴在1的右边,且,求解出即满足最小值为.【详解】当,,当且仅当时,等号成立.当时,为二次函数,要想在处取最小,则对称轴要满足并且,即,解得.【点睛】本题考查分段函数的最值问题,对每段函数先进行分类讨论,找到每段的最小值,然后再对两段函数的最小值进行比较,得到结果,题目较综合,属于中档题.15、答案不唯一,如【解析】

根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设,则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.16、①②③【解析】

由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.【点睛】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)【解析】

(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又//,则于点H,则由直二面角可知面,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于.因为//,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,,在中,.所以与面所成角的正弦值为.【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.18、(1),;(2)2.【解析】

(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.【点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.19、(1)(ⅰ)(ⅱ)分布表见解析;(2)理由见解析【解析】

(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率.

(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列.

(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解.【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题.20、(Ⅰ)直线的极坐标方程为,直线的极坐标方程为,的直角坐标方程为;(Ⅱ)2.【解析】

(Ⅰ)由定义可直接写出直线的极坐标方程,对曲线同乘可得:,转化成直角坐标为;(Ⅱ)分别联立两直线和曲线的方程,由得,由得,则,结合三角函数即可求解;【详解】(Ⅰ)直线的极坐标方程为,直线的极坐标方程为由曲线的极坐标方程得,所以的直角坐标方程为.(Ⅱ)与的极坐标方程联立得所以.与的极坐标方程联立得所以.所以.所以当时,取最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论