




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春兴华高中2025届数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.2.已知函数,正实数是公差为正数的等差数列,且满足,若实数是方程的一个解,那么下列四个判断:①;②;③;④中一定不成立的是()A.① B.②③ C.①④ D.④3.等差数列中,已知,则()A.1 B.2 C.3 D.44.已知直线与直线平行,则实数k的值为()A.-2 B.2 C. D.5.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.36.函数的最大值为()A. B. C. D.7.下列函数中,在上存在最小值的是()A. B. C. D.8.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.9.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知点,则向量在方向上的投影为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的最小值是______.12.在△ABC中,,则________.13.在等差数列中,若,则__________.14.若,,,则M与N的大小关系为___________.15.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.16.若锐角满足则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知、、是的内角,且,.(1)若,求的外接圆的面积:(2)若,且为钝角三角形,求正实数的取值范围.18.如图所示,在直角坐标系中,点,,点P,Q在单位圆上,以x轴正半轴为始边,以射线为终边的角为,以射线为终边的角为,满足.(1)若,求(2)当点P在单位圆上运动时,求函数的解析式,并求的最大值.19.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,离心率为12,过F1的直线l(1)求椭圆C的方程;(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.21.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:
该几何体是一个底面半径,高的放在平面上的半圆柱,如图,
故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.2、D【解析】
先判断出函数的单调性,分两种情况讨论:①;②.结合零点存在定理进行判断.【详解】在上单调减,值域为,又.(1)若,由知,③成立;(2)若,此时,①②③成立.综上,一定不成立的是④,故选D.【点睛】本题考查零点存在定理的应用,考查自变量大小的比较,解题时要充分考查函数的单调性,对函数值符号不确定的,要进行分类讨论,结合零点存在定理来进行判断,考查分析问题和解决问题的能力,属于中等题.3、B【解析】
已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.4、A【解析】
由两直线平行的可得:,运算即可得解.【详解】解:由两直线平行的判定可得:,解得,故选:A.【点睛】本题考查利用两直线平行求参数,属基础题.5、B【解析】
①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.6、D【解析】
函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.7、A【解析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】
由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.9、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质10、A【解析】
,,向量在方向上的投影为,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.12、【解析】
因为所以注意到:故.故答案为:13、【解析】
利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.14、【解析】
根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.15、【解析】
本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【点睛】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.16、【解析】
由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据同角三角函数基本关系先求得,再由正弦定理求得即可;(2)因大小不能确定,故钝角不能确定,结合三角形三边关系和余弦定理特点即可判断【详解】(1)由,又,即,故外接圆的面积为:(2),,,根据三边关系有,当为钝角时,可得,即,解得,故;当为钝角时,可得,即,解得,故;综上可得的范围是【点睛】本题考查正弦定理的应用,余弦定理和三角形中形状的判断的关系,属于中档题18、(1)(2),最大值.【解析】
(1)由角的定义求出,再由数量积定义计算;(2)由三角函数定义写出坐标,求出的坐标,计算出,利用两角和的正弦公式可化函数为一个三角函数形式,由正弦函数性质可求得最大值.【详解】(1)由图可知,,..(2)由题意可知,.因为,,所以.所以,.所以.当()时,取得最大值.【点睛】本题考查任意角的定义,平面向量的数量积的坐标运算,考查两角和的正弦公式、诱导公式及正弦函数的性质.本题解题关键是掌握三角函数的定义,表示出坐标.19、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.20、(1)x2【解析】
(1)根据三角形周长为1,结合椭圆的定义可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得椭圆方程;(2)分类讨论,当直线斜率斜存在时,联立y=kx+b【详解】(1)由题意知,4a=1,则a=2,由椭圆离心率e=ca=∴椭圆C的方程x2(2)由题意,当直线AB的斜率不存在,此时可设A(x3,x3),B(x3,-x3).又A,B两点在椭圆C上,∴x0∴点O到直线AB的距离d=12当直线AB的斜率存在时,设直线AB的方程为y=kx+b.设A(x1,y1),B(x2,y2)联立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,则x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),满足△>3.∴点O到直线AB的距离d=b综上可知:点O到直线AB的距离d=221【点睛】本题主要考查椭圆的定义及椭圆标准方程、圆锥曲线的定值问题以及点到直线的距离公式,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年自动化智能制造策划合作协议
- 2025年上海市重大活动策划合作安全协议
- 2025年人力资源服务外包协议模版
- 2025年官方策划完整版离婚协议书模板范例
- 2025年威海市解除雇佣协议书
- 2025年教育合作机构招生联盟协议
- 数据泄露与信息安全的企业责任
- 2025年注册税务师税法二重点难点与案例分析解析汇编专项专项高频考点试卷
- 2025年有限空间作业安全操作规范试题集
- 2025年执业药师考试药学综合知识合理用药案例解析与考试技巧试题
- 恒生笔试题及答案
- 2025-2031年中国垃圾处理市场竞争策略及行业投资潜力预测报告
- 找人办事花钱协议书
- 2024-2025学年青岛版(五四学制)小学数学二年级下册(全册)知识点复习要点归纳
- 2025年入团考试必考题目试题及答案
- 人工智能训练师(三级)职业技能鉴定理论考试题(附答案)
- 职业技术学院装配式建筑工程技术专业人才培养方案(2024版)
- 学校学生食品安全培训课件
- 设计图学知到智慧树期末考试答案题库2025年华东理工大学
- 空气动力学试题及答案
- 2024-2025部编版小学道德与法治一年级下册知识点(选择题集)
评论
0/150
提交评论