版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市上海市三林中学数学高一下期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.4.若直线始终平分圆的周长,则的最小值为()A. B.5 C.2 D.105.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.6.已知,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴的方程为()A. B. C. D.7.一个扇形的弧长与面积都是3,则这个扇形圆心角的弧度数为()A. B. C. D.8.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.9.等差数列的前项和为,若,则()A.27 B.36 C.45 D.5410.已知向量,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的化简结果是_________.12.某空间几何体的三视图如图所示,则该几何体的体积为________13.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.14.在数列中,已知,,记为数列的前项和,则_________.15.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.16.下列结论中:①②函数的图像关于点对称③函数的图像的一条对称轴为④其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,令(1)求证数列为等比数列,并求通项公式;(2)求数列的前n项和.18.某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:中学编号12345678原料采购加工标准评分x10095938382757066卫生标准评分y8784838281797775(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.参考公式:,;参考数据:,.19.已知数列的前项和为,点在函数的图像上.(1)求数列的通项;(2)设数列,求数列的前项和.20.已知,.求和的值.21.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【点睛】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.2、C【解析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.3、D【解析】
先还原几何体,再根据形状求表面积.【详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【点睛】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.4、B【解析】试题分析:把圆的方程化为标准方程得,所以圆心坐标为半径,因为直线始终平分圆的周长,所以直线过圆的圆心,把代入直线得;即,在直线上,是点与点的距离的平方,因为到直线的距离,所以的最小值为,故选B.考点:1、圆的方程及几何性质;2、点到直线的距离公式及最值问题的应用.【方法点晴】本题主要考查圆的方程及几何性质、点到直线的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用几何意义,将的最小值转化为点到直线的距离解答的.5、D【解析】
先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【点睛】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.6、B【解析】分析:由左加右减,得出解析式,因为解析式为正弦函数,所以令,解出,对k进行赋值,得出对称轴.详解:由左加右减可得,解析式为正弦函数,则令,解得:,令,则,故选B.点睛:三角函数图像左右平移时,需注意要把x放到括号内加减,求三角函数的对称轴,则令等于正弦或余弦函数的对称轴公式,求出x解析式,即为对称轴方程.7、B【解析】
根据扇形的弧长与面积公式,代入已知条件即可求解.【详解】设扇形的弧长为,面积为,半径为,圆心角弧度数为由定义可得,代入解得rad故选:B【点睛】本题考查了扇形的弧长与面积公式应用,属于基础题.8、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.9、B【解析】
利用等差数列的性质进行化简,由此求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题.10、B【解析】
由向量平行可构造方程求得结果.【详解】,解得:故选:【点睛】本题考查根据向量平行求解参数值的问题,关键是明确两向量平行可得.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】原式,因为,所以,且,所以原式.12、2【解析】
根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.13、【解析】试题分析:因为,所以.考点:向量坐标运算.14、【解析】
根据数列的递推公式求出该数列的前几项,找出数列的周期性,从而求出数列的前项和的值.【详解】对任意的,,.则,,,,,,所以,.,且,,故答案为:.【点睛】本题考查数列递推公式的应用,考查数列周期性的应用,解题时要结合递推公式求出数列的前若干项,找出数列的规律,考查推理能力和计算能力,属于中等题.15、2【解析】
由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.16、①③④【解析】
由两角和的正切公式的变形,化简可得所求值,可判断①正确;由正切函数的对称中心可判断②错误;由余弦函数的对称轴特点可判断③正确;由同角三角函数基本关系式和辅助角公式、二倍角公式和诱导公式,化简可得所求值,可判断④正确.【详解】①,故①正确;②函数的对称中心为,,则图象不关于点对称,故②错误;③函数,由为最小值,可得图象的一条对称轴为,故③正确;④,故④正确.【点睛】本题主要考查三角函数的图象和性质应用以及三角函数的恒等变换,意在考查学生的化简运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由变形可得,即,于是可得数列为等比数列,进而得到通项公式;(2)由(1)得,然后分为奇数、偶数两种情况,将转化为数列的求和问题解决.【详解】(1)∵,∴,∵,∴.又,∴数列是首项为8,公比为3的等比数列,∴.(2)当为正偶数时,.当为正奇数时,.∴.【点睛】(1)证明数列为等比数列时,在运用定义证明的同时还要说明数列中不存在等于零的项,这一点容易忽视.(2)数列求和时要根据数列通项公式的特点,选择合适的方法进行求解,求解时要注意确定数列的项数.18、(1);(2)【解析】
(1)由题意计算、,求出回归系数,写出线性回归方程;(2)用列举法写出基本事件数,计算所求的概率值.【详解】(1)由题意得:,,,.故所求的线性回归方程为:.(2)从8个中学食堂中任选两个,共有共28种结果:,,,,,,,,,,,,,,,,,,,,,,,,,,,.其中原料采购加工标准的评分和卫生标准的评分均超过80分的有10种结果:,,,,,,,,,,所以该组被评为“对比标兵食堂”的概率为.【点睛】本题考查了线性回归方程的求解,考查了利用列举法求古典概型的概率问题,是基础题.19、(1),(2)【解析】
(1)把点带入即可(2)根据(1)的结果利用错位相减即可。【详解】(1)把点带入得,则时,时,经验证,也满足,所以(2)由(1)得,所以则①②①②得【点睛】本题主要考查了数列通项的求法,以及数列前项和的方法。求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等。求数列前项和常用的方法有:错位相减、裂项相消、公式法、分组求和等。属于中等题。20、,【解析】
把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15724-2024实验室玻璃仪器烧杯
- 2024年度研发合作合同:某科技公司与某高校共同研发新技术
- 2024年度股权投资合同标的与投资服务详细规定
- 2024年度商务用车租赁与管理合同
- 2024年度船舶建造与修理合同
- 2024年度版权许可使用合同涉及美术作品
- 2024年度租赁合同:设备租赁及维护合同
- 2024年度二手车交易市场车位租赁协议
- 2024年度租赁脚手架合同
- 《富尊宣传》课件
- 脊柱外科护理创意
- 湖北商会法律知识讲座
- 全面质量管理培训-(完整版)
- 药品质量与安全职业生涯规划
- 烟草县局内管培训课件
- 2024年高考语文思辨类作文写作:二元思辨性“敢为人先与不为人先”
- 2022农房设计和建设技术导则
- 发豆芽实验报告范文
- 苏教版四年级上册竖式计算400题及答案
- 2024年河南省研学旅行(高职) 技能大赛参考试题库(含答案)
- 商品学(慕课版)教案汇总-教学设计 1.1走近商品 -6.2品类管理
评论
0/150
提交评论