2025届云南省玉溪市易门一中高一下数学期末监测试题含解析_第1页
2025届云南省玉溪市易门一中高一下数学期末监测试题含解析_第2页
2025届云南省玉溪市易门一中高一下数学期末监测试题含解析_第3页
2025届云南省玉溪市易门一中高一下数学期末监测试题含解析_第4页
2025届云南省玉溪市易门一中高一下数学期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省玉溪市易门一中高一下数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.2.在中,,则这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形3.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,4.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10 B.11 C.12 D.135.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形6.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.7.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.8.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.19.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.810.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆弧长度等于圆内接正六边形的边长,则该圆弧所对圆心角的弧度数为________.12.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.13.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是14.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.15.在中,,,点为延长线上一点,,连接,则=______.16.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.己知向量,,设函数,且的图象过点和点.(1)当时,求函数的最大值和最小值及相应的的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,若在有两个不同的解,求实数的取值范围.18.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.19.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:间隔时间(分钟)81012141618等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.参考公式:用最小二乘法求线性回归方程的系数公式:,(1)若选取的是前4组数据,求关于的线性回归方程;(2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?20.等差数列中,.(1)求的通项公式;(2)设,求数列的前项和.21.如图所示,在三棱柱中,侧棱底面,,D为的中点,.(1)求证:平面;(2)求与所成角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.2、B【解析】解:3、D【解析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪4、C【解析】

先由男女生总数以及抽取的人数确定抽样比,由男生总人数乘以抽样比即可得出结果.【详解】用分层抽样的方法从校乐团中抽取人,所得抽样比为,因此抽取到的男同学人数为人.故选C【点睛】本题主要考查分层抽样,熟记概念即可,属于常考题型.5、B【解析】

利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.6、B【解析】

函数,由,可得,,因此即可得出.【详解】函数由,可得解得,∵在区间内没有零点,

.故选B.【点睛】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.7、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.8、B【解析】

由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.9、A【解析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10、D【解析】

根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【点睛】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据圆的内接正六边形的边长得出弧长,利用弧长公式即可得到圆心角.【详解】因为圆的内接正六边形的边长等于圆的半径,所以圆弧长所对圆心角的弧度数为1.故答案为:1【点睛】此题考查弧长公式,根据弧长求圆心角的大小,关键在于熟记圆的内接正六边形的边长.12、4【解析】

先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.13、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.14、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.15、.【解析】

由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【点睛】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.16、或【解析】

利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值为2,此时;最小值为-1,此时.(2)【解析】

(1)根据向量数量积坐标公式,列出函数,再根据函数图像过定点,求解函数解析式,当时,解出的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出解析式,画出在上的图象,根据图像即可求解参数取值范围.【详解】解:(1)由题意知.根据的图象过点和,得到,解得,.当时,,,最大值为2,此时,最小值为-1,此时.(2)将函数的图象向右平移一个单位得,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得令,,如图当时,在有两个不同的解∴,即.【点睛】本题考查(1)三角函数最值问题(2)三角函数的平移伸缩变换,考查计算能力,考查转化与化归思想,考查数形结合思想,属于中等题型.18、(1)(–5,–4)(2)【解析】

(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.19、(1)(2)是“理想回归方程”(3)估计间隔时间最多可以设置为21分钟【解析】

(1)根据所给公式计算可得回归方程;(2)由理想回归方程的定义验证;(3)直接解不等式即可.【详解】(1),(2)当时,当时,,所以判断(1)中的方程是“理想回归方程”(3)由,得估计间隔时间最多可以设置为21分钟【点睛】本题考查回归直线方程,解题时直接根据所给公式计算,考查了学生的运算求解能力.20、(1)(2)【解析】

(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.因为所以.解得a1=1,d=.所以{an}的通项公式为an=.(2)b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论