版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省肥东县高级中学数学高一下期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中,角的对边分别为.若,则角的大小为()A. B.或 C. D.或2.已知函数,那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④3.数列中,,且,则数列前2019项和为()A. B. C. D.4.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.5.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.56.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.7.已知则()A. B. C. D.8.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-239.下列函数中,图象的一部分如图所示的是()A. B.C. D.10.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-2二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则______.12.已知3a=2,则32a=____,log318﹣a=_____13.设函数,则________.14.________.15.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.16.若数列的前项和为,则该数列的通项公式为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.18.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.19.对于三个实数、、,若成立,则称、具有“性质”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.20.已知函数.(1)求在区间上的单调递增区间;(2)求在的值域.21.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用正弦定理,边化角化简即可得出答案.【详解】由及正弦定理得,又,所以,所以,又,所以.故选A【点睛】本题考查正弦定理解三角形,属于基础题.2、A【解析】
根据正弦函数的周期性及对称性,逐项判断,即可得到本题答案.【详解】由,得,所以的最小正周期为,即,故①正确;由,令,得的对称轴为,所以是的对称轴,不是的对称轴,故②正确,③不正确;由,令,得的对称中心为,所以不是的对称中心,故④不正确.故选:A【点睛】本题主要考查正弦函数的周期性以及对称性.3、B【解析】
由,可得,化为:,利用“累加求和”方法可得,再利用裂项求和法即可得解.【详解】解:∵,∴,整理得:,∴,又∴,可得:.则数列前2019项和为:.故选B.【点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.4、B【解析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.5、B【解析】
由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【点睛】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.6、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。7、B【解析】
根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【点睛】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.8、D【解析】
求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.9、D【解析】
设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.10、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.12、42.【解析】
由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.13、【解析】
利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.14、【解析】
直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.15、①②④【解析】
由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.16、【解析】
由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】(1):,.用分层抽样比较合适.第1组应抽取的人数为,第2组应抽取的人数为,第3组应抽取的人数为,第4组应抽取的人数为,第5组应抽取的人数为.(2)(1)中25人的样本中的优秀员工中,第4组有3人,记这3人分别为,第5组有3人,记这3人分别为.从这6人中随机选取2名,所有的基本事件为:,,,,,,,,,,,,,,,共有15个基本事件.选取的2名工人在同一组的基本事件有,,,,,共6个,故选取的2名工人在同一组的概率为.【点睛】本小题主要考查补全频率分布,考查分层抽样,考查古典概型的计算,属于基础题.18、(1)见解析(2)见解析【解析】
(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【点睛】本题考查直线和平面垂直的判定,平面和平面平行的判断,比较基础.19、(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【解析】
(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【详解】(1)①因为,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立,所以存在及使即可.令,则,当时,,所以在上是增函数,所以时,,当时,,故时,因为在上单调递减,在上单调递增,所以,故只需满足即可,解得.(3)假设具有“性质2018”,则,即证明在任意2019个互不相同的实数中,一定存在两个实数,满足:.证明:由,令,由万能公式知,将等分成2018个小区间,则这2019个数必然有两个数落在同一个区间,令其为:,即,也就是说,在,,,这2019个数中,一定有两个数满足,即一定存在两个实数,满足,从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.20、(1)和.(2)【解析】
(1)利用辅助角公式可将函数化简为;令可求出的单调递增区间,截取在上的部分即可得到所求的单调递增区间;(2)利用的范围可求得的范围,对应正弦函数的图象可求得的范围,进而得到函数的值域.【详解】(1)令,解得:令,可知在上单调递增令,可知在上单调递增在上的单调递增区间为:和(2)当时,即在的值域为:【点睛】本题考查正弦型函数单调区间和值域的求解问题;解决此类问题的常用方法是采用整体对应的方式,将整体对应正弦函数的单调区间或整体所处的范围,从而结合正弦函数的知识可求得结果.21、(1)和;(2)和【解析】
(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度物业服务合同:关于物业管理公司与业主委员会之间的权利义务规定
- 2024年度跨境电商平台建设与运营协议
- 二零二四年度特许经营合同:连锁餐饮品牌特许经营协议(2024年度)
- 2024年度广告发布与效果评估合同
- 中班安全教案小心夹手
- 2024年度金融服务合同:企业综合金融服务协议
- 保山学院《英语听力》2021-2022学年第一学期期末试卷
- 2024年度大棚农业产业链整合合作协议
- 美团2024年度商家区块链技术应用合同
- 保定学院《中国传统音乐》2021-2022学年第一学期期末试卷
- s3-2多级汽轮机的损失及汽轮机装置的效率
- 人教版一年级上册数学期中测试题 (2)
- 数学建模第02章_简单的优化模型
- 高中英语语法 主谓一致(27张)ppt课件
- 运营安全管理方案
- 110kV及以上电力电缆敷设施工方法
- 天然气水合物科普PPT
- 医院信息系统安全等级保护建设方案
- 冲击材料特性
- 美术课件《色彩的对比》
- VDA6.3过程审核表
评论
0/150
提交评论