山东省聊城市高唐一中2025届高一下数学期末监测模拟试题含解析_第1页
山东省聊城市高唐一中2025届高一下数学期末监测模拟试题含解析_第2页
山东省聊城市高唐一中2025届高一下数学期末监测模拟试题含解析_第3页
山东省聊城市高唐一中2025届高一下数学期末监测模拟试题含解析_第4页
山东省聊城市高唐一中2025届高一下数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省聊城市高唐一中2025届高一下数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.曲线与过原点的直线没有交点,则的倾斜角的取值范围是()A. B. C. D.2.已知集合A=-1,A.-1,  0,  13.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.点到直线(R)的距离的最大值为A. B. C.2 D.5.在中,角,,的对边分别为,,,若,,则()A. B. C. D.6.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.7.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.8.等比数列的前n项和为,已知,则A. B. C. D.9.设首项为,公比为的等比数列的前项和为,则()A. B. C. D.10.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是第三象限角,则.12.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101313.如图,边长为2的菱形的对角线相交于点,点在线段上运动,若,则的最小值为_______.14.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________15.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.16.若两个向量与的夹角为,则称向量“”为向量的“外积”,其长度为.若已知,,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.18.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.19.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.20.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.21.已知,,函数.(1)求在区间上的最大值和最小值;(2)若函数在区间上是单调递增函数,求正数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作出曲线的图形,得出各射线所在直线的倾斜角,观察直线在绕着原点旋转时,直线与曲线没有交点时,直线的倾斜角的变化,由此得出的取值范围.【详解】当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为.作出曲线的图象如下图所示:由图象可知,要使得过原点的直线与曲线没有交点,则直线的倾斜角的取值范围是,故选:A.【点睛】本题考查直线倾斜角的取值范围,考查数形结合思想,解题的关键就是作出图形,利用数形结合思想进行求解,属于中等题.2、B【解析】

直接利用交集运算得到答案.【详解】因为A=-1,  故答案选B【点睛】本题考查了交集运算,属于简单题.3、B【解析】

该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【点睛】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.4、A【解析】

把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【点睛】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.5、A【解析】

由正弦定理求得sinA,利用同角三角函数的基本关系求得cosA,求出sinB=sin(120°+A)的值,可得

的值.【详解】△ABC中,由正弦定理可得

,∴

,∴sinA=

,cosA=.

sinB=sin(120°+A)=

•+•=

,再由正弦定理可得

=

=

故答案为

A.【点睛】本题考查正弦定理,两角和与差的正弦公式的应用,求出sinB是解题的关键,属基础题.6、D【解析】

先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.7、D【解析】

由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,

则,

为平面的一个法向量.

∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.8、A【解析】设公比为q,则,选A.9、D【解析】Sn====3-2an.10、C【解析】

以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.12、21.2【解析】

计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.13、【解析】

以为原点建立平面直角坐标系,利用计算出两点的坐标,设出点坐标,由此计算出的表达式,,进而求得最值.【详解】以为原点建立平面直角坐标系如下图所示,设,则①,由得②,由①②解得,故.设,则,当时取得最小值为.故填:.【点睛】本小题主要考查平面向量的坐标运算,考查向量数量积的坐标表示以及数量积求最值,考查二次函数的性质,考查数形结合的数学思想方法,属于中档题.14、1【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-2点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.15、【解析】

先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【点睛】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.16、3【解析】

故答案为3.【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(1)见解析【解析】

(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.18、(1)(–5,–4)(2)【解析】

(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.19、(1)(2)答案不唯一,具体见解析(3)1【解析】

(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【点睛】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。20、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【点睛】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论