2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省兖州一中高一数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则角的终边所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.33.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为()A. B. C. D.5.正方体中,异面直线与BC所成角的大小为()A. B. C. D.6.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且7.已知直线,与互相垂直,则的值是()A. B.或 C. D.或8.设等差数列的前项和为,若,,则的值为()A. B. C. D.9.在等比数列中,,,则()A. B.C. D.10.已知是两条异面直线,,那么与的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直二、填空题:本大题共6小题,每小题5分,共30分。11.过点作圆的两条切线,切点分别为,则=.12.如果是奇函数,则=.13.正方体中,分别是的中点,则所成的角的余弦值是__________.14.已知锐角、满足,,则的值为______.15.已知,,,则的最小值为________.16.已知等比数列中,若,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.18.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.19.已知的顶点,边上的中线所在直线方程为,边上的高,所在直线方程为.(1)求顶点的坐标;(2)求直线的方程.20.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.21.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.

(1)求角A的值;

(2)若,,求△ABC的面积S.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由可知:则的终边所在的象限为第四象限故选2、C【解析】

先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【详解】由题可得x=所以这组数据的方差S2故答案选C【点睛】本题考查方差的定义:一般地设n个数据:x1,x2,3、A【解析】

由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【点睛】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.4、D【解析】

分离常数法化简f(x),根据新定义即可求得函数y=[f(x)]的值域.【详解】,又>0,∴,∴∴当x∈(1,1)时,y=[f(x)]=1;当x∈[1,)时,y=[f(x)]=1.∴函数y=[f(x)]的值域是{1,1}.故选D.【点睛】本题考查了新定义的理解和应用,考查了分离常数法求一次分式函数的值域,是中档题.5、D【解析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.6、D【解析】可取,;,,,,,故选D.7、B【解析】

根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.8、D【解析】

利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.9、B【解析】

设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.10、C【解析】

由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【点睛】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

如图,连接,在直角三角形中,所以,,,故.考点:1.直线与圆的位置关系;2.平面向量的数量积.12、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题13、【解析】

取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.14、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.15、1【解析】

由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.16、4【解析】

根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)正四棱柱的底面边长为时,正四棱柱的表面积最大值为48.【解析】试题分析:(1)根据比例关系式求出关于的解析式即可;(2)设该正四棱柱的表面积为,得到关系式,根据二次函数的性质求出的最大值即可.试题解析:(1)根据相似性可得:,解得:;(2)设该正四棱柱的表面积为.则有关系式,因为,所以当时,,故当正四棱柱的底面边长为时,正四棱柱的表面积最大值为.点睛:本题考查了数形结合思想,考查二次函数的性质以及求函数的最值问题,是一道中档题;该题中的难点在于必须注意圆锥轴截面图时,三角形内的矩形的宽为正四棱柱的底面对角线的长度,除了二次函数求最值以外还有基本不等式法、转化法:如求的最小值,那么可以看成是数轴上的点到和的距离之和,易知最小值为2、求导法等.18、(1)或;(2).【解析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.【点睛】本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.19、(1);(2)【解析】

(1)根据边上的高所在直线方程求出的斜率,由点斜式可得的方程,与所在直线方程联立即可得结果;(2)设则,代入中,可求得点坐标,利用两点式可得结果.【详解】(1)由边上的高所在直线方程为得,所以直线AB所在的直线方程为,即联立解得所以顶点的坐标为(4,3)(2)因为在直线上,所以设则,代入中,得所以则直线的方程为,即【点睛】本题主要考查直线的方程,直线方程主要有五种形式,每种形式的直线方程都有其局限性,斜截式与点斜式要求直线斜率存在,所以用这两种形式设直线方程时要注意讨论斜是否存在;截距式要注意讨论截距是否为零;两点式要注意讨论直线是否与坐标轴平行;求直线方程的最终结果往往需要化为一般式.20、(1)或.(2)【解析】

(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为.故过点M的圆的切线方程为或.(2)∵圆心到直线的距离为,∴,解得.【点睛】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.21、(1)(1)【解析】试题分析:(1)由已知利用正弦定理,两角和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论