![湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题含解析_第1页](http://file4.renrendoc.com/view2/M00/15/39/wKhkFmZlNkOANVoZAAI64s1AlZc155.jpg)
![湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题含解析_第2页](http://file4.renrendoc.com/view2/M00/15/39/wKhkFmZlNkOANVoZAAI64s1AlZc1552.jpg)
![湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题含解析_第3页](http://file4.renrendoc.com/view2/M00/15/39/wKhkFmZlNkOANVoZAAI64s1AlZc1553.jpg)
![湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题含解析_第4页](http://file4.renrendoc.com/view2/M00/15/39/wKhkFmZlNkOANVoZAAI64s1AlZc1554.jpg)
![湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题含解析_第5页](http://file4.renrendoc.com/view2/M00/15/39/wKhkFmZlNkOANVoZAAI64s1AlZc1555.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市茶陵县茶陵三中2024届高一下数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量满足.为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.2.设,则比多了()项A. B. C. D.3.已知三角形为等边三角形,,设点满足,若,则()A. B. C. D.4.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°5.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.6.某防疫站对学生进行身体健康调查,与采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人7.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.8.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx9.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.110.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.12.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________13.若是三角形的内角,且,则等于_____________.14.数列中,,以后各项由公式给出,则等于_____.15.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.16.设数列的通项公式,则数列的前20项和为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知三角形的三个顶点,,.(1)求线段的中线所在直线方程;(2)求边上的高所在的直线方程.18.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.19.已知向量满足,且向量与的夹角为.(1)求的值;(2)求.20.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.21.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
不妨设,由得出点的坐标,根据题意得出曲线表示一个以为圆心,为半径的圆,区域表示以为圆心,内径为,外径为的圆环,再由是两段分离的曲线,结合圆与圆的位置关系得出的取值.【详解】不妨设则,所以,则曲线表示一个以为圆心,为半径的圆因为区域,所以区域表示以为圆心,内径为,外径为的圆环由于是两段分离的曲线,则该两段曲线分别为上图中的要使得是分离的曲线,则所在的圆与圆相交于不同的两点所以,即故选:A【点睛】本题主要考查了集合的应用以及由圆与圆的位置关系确定参数的范围,属于中档题.2、C【解析】
可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.3、D【解析】
用三角形的三边表示出,再根据已知的边的关系可得到关于的方程,解方程即得。【详解】由题得,,,整理得,化简得,解得.故选:D【点睛】本题考查平面向量的线性运算及平面向量基本定理,是常考题型。4、C【解析】
取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.5、C【解析】
求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.6、D【解析】由分层抽样的办法可知在名学生中抽取的男生有,故女生人数为,应选答案D.7、B【解析】
过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.8、C【解析】
先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。9、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10、C【解析】
直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【点睛】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.12、,【解析】
根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.14、【解析】
可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【点睛】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.16、【解析】
对去绝对值,得,再求得的前项和,代入=20即可求解【详解】由题的前n项和为的前20项和,代入可得.故答案为:260【点睛】本题考查等差数列的前项和,去绝对值是关键,考查计算能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】
(1)先求出BC中点的坐标,再求BC的中线所在直线的方程;(2)先求出AB的斜率,再求出边上的高所在的直线方程.【详解】(1)由题得BC的中点D的坐标为(2,-1),所以,所以线段的中线AD所在直线方程为即.(2)由题得,所以AB边上的高所在直线方程为,即.【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.18、,【解析】
由图形知旋转后的几何体是一个圆台,从上面挖去一个半球后剩余部分,根据图形中的数据可求出其表面积和体积.【详解】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面,而半球面的表面积,圆台的底面积,圆台的侧面积,所以所求几何体的表面积;圆台的体积,半球的体积,所以,旋转体的体积为,故得解.【点睛】本题考查组合体的表面积、体积,还考查了空间想象能力,能想象出旋转后的旋转体的构成是本题的关键,属于中档题.19、(1)(2)【解析】
(1)根据,得到,再由题中数据,即可求出结果;(2)根据向量数量积的运算法则,以及(1)的结果,即可得出结果.【详解】解:(1)因为,所以,即.因为,且向量与的夹角为,所以,即.(2)由(1)可得.【点睛】本题主要考查平面向量的数量积,熟记模的计算公式,以及向量数量积的运算法则即可,属于常考题型.20、证明见解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【详解】证明:因为SA⊥面ABC,BC面ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新型养老服务机构代缴社保服务协议范本
- 2025年新能源发电设备定期检查与维护合同
- 2025年度智能车库租赁及车位租赁与停车资源共享协议
- 2025年度土地承包经营权流转纠纷调解合同模板
- 2025年茶叶种植基地生态保护与修复承包协议
- 2025年度离婚协议书格式规范与编制要求
- 秘书工作计划对企业目标的支持
- 班级跨学科活动的实施路径计划
- 社团活动资源共享方案计划
- 医院文化建设增效方案计划
- 产品可行性分析报告范文
- 2024年国家公务员考试《行测》真题(地市级)及答案解析
- 2024年PIE工程师培训教程:敏捷项目管理
- 新能源汽车驱动电机及控制系统检修课件 学习情境5:电机控制器
- 地质灾害知识培训
- 传统春节习俗
- 短视频内容课件
- 医院消防安全知识培训课件
- 高考英语语法考点梳理
- 《护患沟通》课件
- 《篮球防守脚步移动技术 滑步》教案
评论
0/150
提交评论