福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题含解析_第1页
福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题含解析_第2页
福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题含解析_第3页
福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题含解析_第4页
福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省罗源第二中学、连江二中2023-2024学年数学高一下期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.2.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④3.若a、b、c>0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为()A.-1 B.+1C.2+2 D.2-24.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.16.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.7.等比数列中,,则等于()A.16 B.±4 C.-4 D.48.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.9.已知函数的值域为,且图像在同一周期内过两点,则的值分别为()A. B.C. D.10.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.两圆,相切,则实数=______.12.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.13.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.14.已知的内角、、的对边分别为、、,若,,且的面积是,___________.15.若数列满足,,则______.16.若,则函数的值域为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.18.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.19.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值以及对应的的值.20.设,,.(1)若,求实数的值;(2)若,求实数的值.21.已知a,b,c分别为ΔABC三个内角A,B,C的对边,且.(1)求角A的大小;(2)若,且ΔABC的面积为,求a的值;(3)若,求的范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.2、C【解析】

根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.3、D【解析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(当且仅当a+c=b+a,即b=c时取“=”),∴2a+b+c≥2=2(-1)=2-2.故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误4、B【解析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.5、D【解析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质6、A【解析】

根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.7、D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.8、A【解析】

由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.9、C【解析】

先利用可求出的值,再利用、两点横坐标之差的绝对值为周期的一半,计算出周期,再由可计算出的值,从而可得出答案.【详解】由题意可知,,、两点横坐标之差的绝对值为周期的一半,则,,因此,,,故选C.【点睛】本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调性.10、D【解析】

对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、0,±2【解析】

根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.12、{x|-1<x<-}【解析】

观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【点睛】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.13、【解析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【点睛】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.14、【解析】

利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.15、【解析】

利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.16、【解析】

令,结合可得,本题转化为求二次函数在的值域,求解即可.【详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【点睛】本题考查了函数的值域,利用换元法是解决本题的一个方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解析】

(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴,又∵,∴,,∴.∴函数的解析式为.∵函数的图象经过点,∴,∴,又∵,∴.故函数的解析式为,其振幅是2,初相是.(2)∵,∴.于是,当,即时,函数取得最大值0;当,即时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题.18、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【点睛】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.19、(1);(2)当时,取得最小值;当时,取得最大值.【解析】

(1)利用降幂扩角公式先化简三角函数为标准型,再求解最小正周期;(2)由定义域,先求的范围,再求值域.【详解】(1)所以的最小正周期为.(2)由,得,当,即时,取得最小值,当,即时,取得最大值.【点睛】本题考查利用三角恒等变换化简三角函数解析式,之后求解三角函数的性质,本题中包括最小正周期以及函数的最值,属综合基础题.20、(1);(2)【解析】

(1)由向量加法的坐标运算可得:,再由向量平行的坐标运算即可得解.(2)由向量垂直的坐标运算即可得解.【详解】解:(1),,,,,故,所以.(2),,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论