版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省延安市延川县中学2024届高一下数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.2.关于x的不等式ax-b>0的解集是,则关于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)3.已知是等差数列,其中,,则公差()A. B. C. D.4.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.505.已知函数(,,)的部分图象如图所示,则()A. B. C. D.6.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.7.在中,若,,,则()A., B.,C., D.,8.设点,,若直线与线段没有交点,则的取值范围是A. B. C. D.9.某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是()A. B. C. D.10.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.7二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为2,前n项和为,则=______.12.如图,在中,,是边上一点,,则.13.在中,角的对边分别为,且面积为,则面积的最大值为_____.14.(理)已知函数,若对恒成立,则的取值范围为.15.已知函数,的最小正周期是___________.16.在中,,,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.18.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.19.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.20.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.21.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.2、A【解析】试题分析:因为关于x的不等式ax-b>0的解集是,所以,从而SKIPIF1<0≤0可化为SKIPIF1<0,解得,关于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),选A。考点:本题主要考查一元一次不等式、一元二次不等式的解法。点评:简单题,从已知出发,首先确定a,b的关系,并进一步确定一元二次不等式的解集。3、D【解析】
根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.4、B【解析】
求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.5、D【解析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.6、A【解析】
从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7、A【解析】
利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.8、B【解析】直线恒过点且斜率为由图可知,且故选点睛:本题主要考查了两条直线的交点坐标,直线恒过点,直线与线段没有交点转化为过定点的直线与线段无公共点,作出图象,由图求解即可.9、A【解析】
由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积.故选B.【点睛】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题.10、C【解析】
由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.12、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.13、【解析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.14、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、【解析】
先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】
由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】
(1)由等差数列和等比数列的基本量法求数列的通项公式;(2)用错位相减法求和.【详解】(1)数列公比为,则,∵,∴,∴,的公差为,首项是,则,,∴,解得.∴.(2),数列的前项和记为,,①,②①-②得:,∴.【点睛】本题考查等差数列和等比数列的通项公式,考查等差数列的前n项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.18、(1)2;(2)【解析】
(1)设,利用余弦定理列方程可得:,解方程即可(2)利用(1)中结果即可判断为等边三角形,即可求得中边上的高为,再利用的面积是即可求得:,结合余弦定理可得:,再利用正弦定理可得:,问题得解【详解】(1)在中,设,则,由余弦定理得:即:解之得:,即边的长为2.(2)由(1)得为等边三角形,作于,则∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【点睛】本题主要考查了利用正、余弦定理解三角形,还考查了三角形面积公式的应用及计算能力,属于中档题19、(1)12;(2)过定点,理由见解析【解析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.20、(1)证明见解析;(2).【解析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【点睛】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.21、(1).;(2).【解析】
(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.【详解】(1)由题意,∴,三棱锥的体积就是三棱锥的体积,它们都以为底面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度牛只运输车辆智能调度与优化服务合同4篇
- 二零二五年度智慧城市暖通管网建设合同3篇
- 2025年度赌博成瘾者离婚后财产清偿及子女监护协议3篇
- 2025年度出租车公司股权转让及网络平台建设合同4篇
- 二零二五版淋浴房产业投资基金合作协议4篇
- 个人过桥融资协议模板 2024年适用一
- 2025年度股权代持与业绩对赌条款合同4篇
- 二零二五年度高端商务面包车租赁服务协议3篇
- 二零二五版高档住宅门窗安装与智能家居集成协议2篇
- 二零二五年度数字货币交易合作协议3篇
- 疥疮病人的护理
- 人工智能算法与实践-第16章 LSTM神经网络
- 17个岗位安全操作规程手册
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 中学安全办2024-2025学年工作计划
- 网络安全保障服务方案(网络安全运维、重保服务)
- 2024年乡村振兴(产业、文化、生态)等实施战略知识考试题库与答案
- 现代科学技术概论智慧树知到期末考试答案章节答案2024年成都师范学院
- 软件模块化设计与开发标准与规范
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 有机农业种植模式
评论
0/150
提交评论