云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题含解析_第1页
云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题含解析_第2页
云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题含解析_第3页
云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题含解析_第4页
云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山马关实验高级中学2023-2024学年高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.2.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列3.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.4.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.5.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=06.若非零实数满足,则下列不等式成立的是()A. B. C. D.7.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.48.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.9.已知两个单位向量的夹角为,则下列结论不正确的是()A.方向上的投影为 B.C. D.10.若为圆的弦的中点,则直线的方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知四面体的四个顶点均在球的表面上,为球的直径,,四面体的体积最大值为____12.函数的定义域是_____.13.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.14.直线与间的距离为________.15.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________16.已知,,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数在上的单调递增区间;(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.18.已知对任意,恒成立(其中),求的最大值.19.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.20.在中,,,的对边分别为,,,已知.(1)判断的形状;(2)若,,求.21.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。2、D【解析】

设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.3、D【解析】

利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.4、A【解析】所求的全面积之比为:,故选A.5、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。6、C【解析】

对每一个不等式逐一分析判断得解.【详解】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、C【解析】

由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【点睛】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.8、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.9、B【解析】试题分析:A.方向上的投影为,即,所以A正确;B.,所以B错误;C.,所以,所以C正确;D.,所以.D正确.考点:向量的数量积;向量的投影;向量的夹角.点评:熟练掌握数量积的有关性质是解决此题的关键,尤其要注意“向量的平方就等于其模的平方”这条性质.10、D【解析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

为球的直径,可知与均为直角三角形,求出点到直线的距离为,可知点在球上的运动轨迹为小圆.【详解】如图所示,四面体内接于球,为球的直径,,,,过作于,,点在以为圆心,为半径的小圆上运动,当面面时,四面体的体积达到最大,.【点睛】立体几何中求最值问题,核心通过直观想象,找到几何体是如何变化的?本题求解的突破口在于找到点的运动轨迹,考查学生的空间想象能力和逻辑思维能力.12、.【解析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13、.【解析】

根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.14、【解析】

根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.15、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.16、【解析】

先算出的坐标,然后利用即可求出【详解】因为,所以因为,所以即,解得故答案为:【点睛】本题考查的是向量在坐标形式下的相关计算,较简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为;(2)见解析.【解析】

(1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数在上的单调递增区间,与定义域取交集可得出答案;(2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.【详解】(1).令,解得,所以,函数在上的单调递增区间为,,因此,函数在上的单调递增区间为;(2)将函数的图象向左平移个单位长度,得到函数的图象,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,由,对于中的任意一个,区间长度始终为,大于,每个区间至少含有一个整数,因此,存在无穷多个互不相同的整数,使得.【点睛】本题考查正弦型三角函数单调区间的求解,同时也考查了利用三角函数图象变换求函数解析式,以及三角不等式整数解的个数问题,考查运算求解能力,属于中等题.18、的最大值为.【解析】试题分析:利用二倍角公式,利用换元法,将原不等式转化为二次不等式在区间上恒成立,利用二次函数的零点分布进行讨论,从而得出的最大值,但是在对时的情况下,主要对二次函数的对称轴是否在区间进行分类讨论,再将问题转化为的条件下,求的最大值,试题解析:由题意知,令,,则当,恒成立,开口向上,①当时,,不满足,恒成立,②当时,则必有(1)当对称轴时,即,也即时,有,则,,则,当,时,.当对称轴时,即,也即时,则必有,即,又由(1)知,则由于,故只需成立即可,问题转化为的条件下,求的最大值,然后利用代数式的结构特点或从题干中的式子出发,分别利用三角换元法、导数法以及柯西不等式法来求的最大值.法一:(三角换元)把条件配方得:,,所以,;法二:(导数)令则即求函数的导数,椭圆的上半部分;法三:(柯西不等式)由柯西不等式可知:,当且仅当,即及时等号成立.即当时,最大值为2.综上可知.考点:1.二倍角;2.换元法;3.二次不等式的恒成立问题;4.导数;5.柯西不等式19、(1)见证明;(2)【解析】

(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.20、(1)为直角三角形或等腰三角形(2)【解析】

(1)由正弦定理和题设条件,得,再利用三角恒等变换的公式,化简得,进而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【详解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,则,则或,所以或,所以为直角三角形或等腰三角形.(2)因为,则为等腰三角形,从而,由余弦定理,得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论