




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省莒县2025届数学高一下期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,则()A. B. C. D.2.在中,已知三个内角为,,满足,则().A. B.C. D.3.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.4.已知函数f(x)=x,x≥0,|x2A.a<0 B.0<a<1 C.a>1 D.a≥15.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.66.不等式的解集是A.或 B.或C. D.7.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形8.设a,b,c均为不等于1的正实数,则下列等式中恒成立的是A.B.C.D.9.若,则下列结论不正确的是()A. B. C. D.10.如果直线m//直线n,且m//平面α,那么n与αA.相交 B.n//α C.n⊂α二、填空题:本大题共6小题,每小题5分,共30分。11.中,三边所对的角分别为,若,则角______.12.已知等差数列则.13.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______14.如果数据的平均数是,则的平均数是________.15.函数在区间上的最大值为,则的值是_____________.16.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.18.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.19.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.20.从高三学生中抽出50名学生参加数学竞赛,由成绩得到如图所示的频率分布直方图.利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.(答案精确到0.1)21.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先求出,由此能求出.【详解】∵全集,集合,∴,∴.故选B.【点睛】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.2、C【解析】
利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.3、D【解析】
抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【点睛】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.4、B【解析】
令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.5、B【解析】
由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.6、C【解析】
把原不等式化简为,即可求解不等式的解集.【详解】由不等式即,即,得,则不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.8、B【解析】
根据对数运算的规律一一进行运算可得答案.【详解】解:由a,b,c≠1.考察对数2个公式:,,对选项A:,显然与第二个公式不符,所以为假.对选项B:,显然与第二个公式一致,所以为真.对选项C:,显然与第一个公式不符,所以为假.对选项D:,同样与第一个公式不符,所以为假.所以选B.【点睛】本题主要考查对数运算的性质,熟练掌握对数运算的各公式是解题的关键.9、C【解析】
A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,
∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,
,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.10、D【解析】
利用直线与平面平行的判定定理和直线与平面平行的性质进行判断即可.【详解】∵直线m/直线n,且m/平面∴当n不在平面α内时,平面α内存在直线m'//m⇒n//m',符合线面平行的判定定理可得n/平面α当n在平面α内时,也符合条件,n与α的位置关系是n//α或【点睛】本题主要考查线面平行的判定定理以及线面平行的性质,意在考查对基本定理掌握的熟练程度,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用余弦定理化简已知条件,求得的值,进而求得的大小.【详解】由得,由于,所以.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.12、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.13、①③④⑤【解析】
由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想14、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.15、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.16、【解析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【点睛】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.18、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19、(1)1;(2)【解析】
(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【点睛】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.20、(1)众数为75分,中位数为分;(2)76.2分【解析】
(1)由众数的概念及频率分布直方图可求得众数,根据中位数的概念可求得中位数;.(2)由平均数的概念和频率直方图可求得平均数.【详解】(1)由众数的概念及频率分布直方图可知,这50名学生成绩的众数为75分.因为数学竞赛成绩在的频率为,数学竞赛成绩在的频率为.所以中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60092-376:2025 RLV EN Electrical installations in ships - Part 376: Cables for control and instrumentation circuits 150/250 V (300 V)
- 2025年信息化管理专业考试试卷及答案
- 2025年体育竞技与科学研究试题及答案
- 2025年安全工程师执业资格考试卷及答案
- 2025年环境工程基础课程考试试卷及答案
- 2025年气象学专业考试题及答案
- 一级建造师的试题及答案
- 烧烤学徒合同协议书模板
- 2025年Β-内酰胺类抗菌药物合作协议书
- 思修第五章遵守道德规范锤炼高尚品格
- Foxmail邮箱使用课件
- YB-4001.1-2007钢格栅板及配套件-第1部分:钢格栅板(中文版)
- 国际素食日介绍PPT
- 预制构件及其连接的识图与构造
- 2020译林版新教材高二英语全四册单词表(单词默写)
- 1999年版干部履历表A4
- 267条表情猜成语【动画版】
- 江西赣州城市文化介绍
- 人工智能算法分析 课件 【ch01】绪论
- 热烈祝贺华东六省一市第十五届小学数学课堂教学观摩研省名师优质课赛课获奖课件市赛课一等奖课件
- 外贸PI 简单模板
评论
0/150
提交评论