




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省郯城县2025届高一数学第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,且,则等于()A. B. C. D.2.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水3.已知,则=()A. B. C. D.4.已知分别为的三边长,且,则=()A. B. C. D.35.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.646.在中,点满足,则()A. B.C. D.7.已知向量,,若向量与的夹角为,则实数()A. B. C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.309.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②10.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简:________12.向量.若向量,则实数的值是________.13.函数在的值域是______________.14._____15.已知数列是等差数列,若,,则________.16.在中,角所对的边分别为,下列命题正确的是_____________.①总存在某个内角,使得;②存在某钝角,有;③若,则的最小角小于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.18.某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:售价(元)45678周销量(件)9085837973(1)求周销量y(件)关于售价x(元)的线性回归方程;(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价定为多少?参考公式:,.参考数据:,19.已知幂函数的图像过点.(1)求函数的解析式;(2)设函数在是单调函数,求实数的取值范围.20.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.21.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先由求出,然后按照向量的坐标运算法则算出答案即可【详解】因为,,且所以,即,所以所以故选:B【点睛】若,则2、B【解析】
降水概率指的是降水的可能性,根据概率的意义作出判断即可.【详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【点睛】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.3、C【解析】由得:,所以,故选D.4、B【解析】
由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.5、B【解析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.6、D【解析】
因为,所以,即;故选D.7、B【解析】
根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.【详解】由题意得:,,,解得:本题正确选项:【点睛】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.8、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9、A【解析】
根据面面垂直,面面平行的判定定理判断即可得出答案。【详解】①若,则在平面内必有一条直线使,又即,则,故正确。②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题。10、A【解析】
根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【点睛】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.12、-3【解析】
试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题13、【解析】
利用,即可得出.【详解】解:由已知,,又
,
故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.14、【解析】
将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15、【解析】
求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.16、①③【解析】
①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在内,即可判定;②中,利用两角和的正切公式,化简得到,根据钝角三角形,即可判定;③中,利用向量的运算,得到,由于不共线,得到,再由余弦定理,即可判定.【详解】由题意,对于①中,在中,当,则,若为直角三角形,则必有一个角在内;若为锐角三角形,则必有一个内角小于等于;若为钝角三角形,也必有一个角小于内,所以总存在某个内角,使得,所以是正确的;对于②中,在中,由,可得,由为钝角三角形,所以,所以,所以不正确;对于③中,若,即,即,由于不共线,所以,即,由余弦定理可得,所以最小角小于,所以是正确的.综上可得,命题正确的是①③.故答案为:①③.【点睛】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】
(1)根据题中的新定义代入即可证出.(2)设,,,代入通项解不等式组,使即可求解.(3)首先根据可求时,,当时,,根据题中新定义求出成立,可得,再验证恒成立即可求解.【详解】(1),且,则满足,则数列是数列.综上所述,结论是:数列是数列.(2)设,,则,得,,,则数列的最大值为,则(3),当时,当时,,由,得,当时,恒成立,则要使数列是数列,则的取值范围为.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.18、(1);(2)14元【解析】
(1)由表中数据求得,结合参考数据可得.再代入方程即可求得线性回归方程.(2)设售价为元,代入(1)中的回归方程,求得销量.即可求得利润的表达式.由于周利润大于598元,得不等式后,解不等式即可求解.【详解】(1)由表可得,因为,由参考数据,,所以代入公式可得,则,所以线性回归方程;(2)设售价为元,由(1)知周销量为,所以利润,解得,因为,则.所以为了确保周利润大于598元,则该店应该将产品的售价定为14元.【点睛】本题考查了线性回归方程的求法和简单应用,一元二次不等式的解法,属于基础题.19、(1);(2).【解析】
(1)利用幂函数过点即可求出函数的解析式;(2)利用二次函数对称轴与区间的位置,即可求出实数的取值范围.【详解】(1)因为的图像过点,所以,则,所以函数的解析式为:;(2)由(1)得,所以函数的对称轴为,若函数在是单调函数,则或,即或,所以实数的取值范围为.【点睛】本题考查了幂函数解析式的求解,二次函数单调区间与对称轴的位置关系,属于一般题.20、(1)见证明;(2)【解析】
(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海水养殖的环境影响评估方法考核试卷
- 游乐设备行业绿色可持续发展策略考核试卷
- 火力发电厂施工组织设计考核试卷
- 林业生态环境遥感监测系统考核试卷
- 海洋油气资源开发工程技术标准规范考核试卷
- 电信资费策略考核试卷
- 物业管理与区块链技术考核试卷
- 2025年透明胶槽项目可行性研究报告
- 2025年连铸坯表面温度测量装置项目可行性研究报告
- 哈西站施工方案
- 两带来范文(通用十六篇)
- 综合录井仪工作原理演示教学课件
- 小学三年级诗词大会初赛比赛题目课件
- 房建监理大纲(共114)
- 国际工程招投标流程图
- 城市环境卫生工作物资消耗定额
- 液化气站三级安全教育培训试题
- 经济法实用教程(理论部分)(第八版)(何辛)案例分析及参考答案
- 532近代前夜的危机
- 病原微生物实验室生物安全备案专家意见表
- (精心整理)朱德熙_说 “的”
评论
0/150
提交评论