




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.2一阶微分方程一、可分离变量微分方程如果一阶微分方程可以化为下列形式:则称原方程为变量可分离的方程。如果一阶微分方程可以化为下列形式:则称原方程为变量可分离的方程。运用积分方法即可求得变量可分离方程的通解:其中C为积分后出现的任意常数。
将一个方程化为变量分离方程并求出其通解的过程,称为分离变量法。例1解原方程即对上式两边积分,得原方程的通解例2.解初值问题解:分离变量得两边积分得即由初始条件得C=1,(C为任意常数)故所求特解为例3.求下述微分方程的通解:解:令则故有即解得(C为任意常数)所求通解:例4解于是,原方程化为两边积分,得即形如的方程叫做齐次方程.令代入原方程得两边积分,得积分后再用代替u,便得原方程的通解.解法:分离变量:例5.解微分方程解:则有分离变量积分得代回原变量得通解即说明:显然x=0,y=0,y=x也是原方程的解,但在(C为任意常数)求解过程中丢失了.二、一阶线性微分方程形如的方程称为一阶线性微分方程。方程称为一阶齐线性方程。方程称为一阶非齐线性方程。习惯上,称为方程所对应的齐方程。运用分离变量法,得两边积分,得故表示一个原函数例6解故该一阶齐线性方程的通解为例7解先求此一阶齐线性方程的通解:故该初值问题的解为一阶非齐线性方程的解比较两个方程:请问,你有什么想法?请问,你有什么想法?我想:它们的解的形式应该差不多。但差了一点什么东西呢?行吗?!怎么办?故即上式两边积分,求出待定函数以上的推导过程称为“常数变易法”。这种方法经常用来由齐次问题推出相应的非齐次问题、由线性问题推出相应的非线性问题。例7解所以,方程的通解为例8解不是线性方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国中端酒店行业发展趋势预测及投资战略研究报告
- 年中国水质科学调研仪表行业前景研究与市场分析预测报告
- 智能晾衣机项目可行性研究报告申请报告
- 中国生活氧气机行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 中国公制半径样板行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国信源加密市场竞争格局及投资战略规划报告
- 2023-2028年中国砂浆防水剂行业市场全景评估及投资前景展望报告
- 中国密度板行业市场深度分析及投资策略咨询报告
- 2025年中国蓝牙手机及配件行业发展潜力分析及投资战略咨询报告
- 市政公用设施建设项目工程环境影响评估报告
- 【企业薪酬管理研究国内外文献综述4400字】
- 市政公用工程设计文件编制深度规定(2013年高清版)
- GB/T 19139-2012油井水泥试验方法
- GB/T 18314-2001全球定位系统(GPS)测量规范
- 工贸行业重点可燃性粉尘目录(2022版)
- 铁道概论试题及答案重要
- 空间几何中的平行与垂直 新高考 数学 一轮复习专项提升 精讲精练
- 近代史期末复习试题
- 教学设计 完整版:Summer holiday plans
- 2022年武汉市法院书记员招聘考试题库及答案解析
- DB34-T 4010-2021 水利工程外观质量评定规程-高清现行
评论
0/150
提交评论