黑龙江省哈尔滨市公务员考试数量关系专项练习题附答案(巩固)_第1页
黑龙江省哈尔滨市公务员考试数量关系专项练习题附答案(巩固)_第2页
黑龙江省哈尔滨市公务员考试数量关系专项练习题附答案(巩固)_第3页
黑龙江省哈尔滨市公务员考试数量关系专项练习题附答案(巩固)_第4页
黑龙江省哈尔滨市公务员考试数量关系专项练习题附答案(巩固)_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市公务员考试数量关系专项练习题第一部分单选题(200题)1、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。2、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。3、2,3,7,22,155,()

A、2901

B、3151

C、3281

D、3411

【答案】:答案:D

解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填数字为22×155+1=3411。故选D。4、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。5、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长方体的体积比为多少?()

A、1:8

B、1:6

C、1:4

D、1:3

【答案】:答案:B

解析:等底等高时,椎体体积是柱体体积的,而题中椎体的高是长方体高的一半,四棱锥与长方体的体积之比为1:6。故选B。6、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。7、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()

A、1/3

B、1/4

C、1/5

D、1/6

【答案】:答案:C

解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。8、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。9、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。10、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。11、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。12、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。13、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。14、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。15、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。16、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。17、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。18、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。19、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。20、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。21、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。

A、168岁

B、172岁

C、176岁

D、180岁

【答案】:答案:C

解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。22、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。23、1/5,1/3,3/7,1/2,()

A、5/9

B、1/6

C、6

D、3/5

【答案】:答案:A

解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。24、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。25、9,20,42,86,(),350

A、172

B、174

C、180

D、182

【答案】:答案:B

解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。26、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。27、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。28、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。29、三个学校的志愿队分别去敬老院照顾老人,A学校志愿队每隔7天去一次,B学校志愿队每隔9天去一次,C学校志愿队每隔14天去一次,三个队伍周三第一次同时去敬老院,问下次同时去敬老院是周几?()

A、周三

B、周四

C、周五

D、周六

【答案】:答案:B

解析:根据每隔7天去一次,可知A每8天去一次敬老院,同理,B、C每10天、15天去一次敬老院。下次同时去敬老院应该为120(8、10、15的最小公倍数)天后。每周7天,120÷7=17…1,故三人下次同时去敬老院应该是周三后推一天,即周四。故选B。30、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。31、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。32、甲、乙、丙三名质检员对一批依次编号为1~100的电脑进行质量检测,每个人均从随机序号开始,按顺序往后检测,如检测到编号为100的电脑,则该质检员的检测工作结束。某一时刻,甲检测了76台电脑,乙检测了61台电脑,丙检测了54台电脑,则甲、乙、丙三人均检测过的电脑至少有()台。

A、12

B、15

C、16

D、18

【答案】:答案:B

解析:因为甲、乙、丙三人均从随机序号开始,按顺序往后检测。为了使三人均检测过的电脑最少,所以三人的检测要更分散,因为甲检测了76台电脑,覆盖面比较大,所以可以先把乙、丙共同检测的电脑分散在序号的最两端,最少为61+54-100=15(台),甲会覆盖到乙、丙检测的公共部分,故三人均检测过的为15台。故选B。33、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。34、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。35、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。36、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。37、226,264,316,388,()

A、236

B、386

C、486

D、566

【答案】:答案:C

解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。38、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。39、12,23,34,45,56,()

A、66

B、67

C、68

D、69

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。40、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。41、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。42、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。43、-2,1,31,70,112,()

A、154

B、155

C、256

D、280

【答案】:答案:B

解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。44、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。45、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。

A、7280元

B、7290元

C、7300元

D、7350元

【答案】:答案:B

解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。46、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。47、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。已知甲乙两人托运费分别为109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了()元。

A.1.5

B.2.5

C.3.5

D.4.5

【答案】:答案:A

解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,则甲的行李重量为1.5×(10+x)。所以计算超出部分的重量为1.5×(10+x)-10=5+1.5x,超出金额为49.5元,所以按照比例,乙的行李超出了重量x,超出金额为18元,得到,解得x=4,所以超出部分单价为18÷4=4.5元。所以超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5元。解析二:盈亏思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分为18元,所以对应的多50%的重量,应该是27元。则从甲超出的49.5元中扣除27元,还剩22.5元,这个钱数应该对应着10公斤的50%,即5公斤22.5元。所以每公斤超出部分为4.5元,超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5,得解。故正确答案为A。速解:靠常识解决,题目中说“超出10公斤部分每公斤收费标准略低一些。”所以选稍微低一点的48、三位评委为12名选手投票,每位评委分别都投出了7票,并且每位选手都有评委投票。得三票的选手直接晋级,得两票的选手待定,得一票或无票的直接淘汰,则下列说法正确的是()。

A、晋级和待定的选手共6人

B、待定和淘汰的选手共7人

C、晋级的选手最多有5人

D、晋级比淘汰的选手少3人

【答案】:答案:D

解析:每位评委投了7票,那么这三位评委的选择各包含了7位选手,画出如下文氏图。黑色部分代表三位评委都投票的选手,即晋级选手,记为A。阴影部分代表有两位评委投票的选手,即待定选手,记为B。白色部分代表至多有一位评委投票的选手,即淘汰选手,记为C。D项正确,由容斥原理可知,A+B+C=12,(7+7+7)-B-2A=12,得到B+2A=9,C-A=3,即晋级选手比淘汰选手少3人。方法二:设晋级、待定、淘汰的数量分别为a、b、c,则a+b+c=12,3a+2b+c=3×7=21,得2a+b=9。A项错误,当a+b=6时,a=-1不成立。B项错误,b+c=7,则a=12-7=5,b=5-2×3=-1不可能;C项错误,a=5时,b=-1不可能;D项正确,c-a=3时,得2a+b=9成立。故选D。49、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。50、7,9,-1,5,()

A、3

B、-3

C、2

D、-1

【答案】:答案:B

解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故选B。51、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。52、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。53、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。54、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。55、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。56、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。57、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。58、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。59、3,7,17,115,()

A、132

B、277

C、1951

D、1955

【答案】:答案:C

解析:3×7-4=17,7×17-4=115,即所填数字为17×115-4=1951。故选C。60、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。61、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。62、2,6,13,39,15,45,23,()

A、46

B、66

C、68

D、69

【答案】:答案:D

解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。63、3,10,31,94,(),850

A、250

B、270

C、282

D、283

【答案】:答案:D

解析:10=3×3+1,31=10×3+1,94=31×3+1,每一项等于前一项乘以3加上1,即所填数字为94×3+1=283。故选D。64、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。65、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。66、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。故选B。67、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。68、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。69、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。70、-2,1,31,70,112,()

A、154

B、155

C、256

D、280

【答案】:答案:B

解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。71、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()

A、16

B、17

C、18

D、19

【答案】:答案:A

解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。72、5,4,10,8,15,16,(),()

A、20,18

B、18,32

C、20,32

D、18,36

【答案】:答案:C

解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。故选C。73、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。74、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。75、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。

A、7280元

B、7290元

C、7300元

D、7350元

【答案】:答案:B

解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。76、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。77、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。78、25,32,37,47,()

A、56

B、57

C、58

D、590

【答案】:答案:C

解析:25+2+5=32,32+3+2=37,37+3+7=47,第一项+第一项的个位数字+第一项的十位数字=第二项,即所填数字为47+4+7=58。故选C。79、1,3,10,37,()

A、112

B、144

C、148

D、158

【答案】:答案:B

解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故选B。80、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。81、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。82、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。83、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比为-2的等比数列。故选D。84、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。85、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。86、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。87、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。88、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。89、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。90、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。91、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。92、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。93、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三项=(第一项-第二项)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故选B。94、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。95、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。96、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可转化为1296÷36-18÷36=36-0.5=35.5。故选B。97、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相邻两项逐差:因此,未知项=61+61=122。故选A。98、1,10,2,(),3,8,4,7,5,6

A、6

B、7

C、8

D、9

【答案】:答案:D

解析:间隔组合数列,奇数项1、2、3、4、5和偶数项10、(9)、8、7、6都为等差数列。故选D。99、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。100、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()

A、14

B、15

C、16

D、17

【答案】:答案:B

解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。101、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()

A、13.4

B、14.4

C、15.4

D、16.4

【答案】:答案:C

解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。102、1,10,3,5,()

A、4

B、9

C、13

D、15

【答案】:答案:C

解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。103、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。104、某陶瓷公司要到某地推销瓷器,公司与该地相距900千米。已知瓷器成本为每件4000元,每件瓷器运费为2.5元/千米。如果在运输及销售过程中瓷器的损耗为25%,那么该公司要想实现20%的利润率,瓷器的零售价应是()元。

A、8000

B、8500

C、9600

D、1000

【答案】:答案:D

解析:以一件瓷器为例,1件瓷器成本为4000元,运费为2.5×900=2250元,则成本为4000+2250=6250元,要想实现20%的利润率,应收入6250×(1+20%)=7500元;由于损耗,实际的销售产品数量为1×(1-25%)=75%,所以实际零售价为7500÷75%=1000元。故选D。105、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。106、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。107、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。108、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。109、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。110、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。111、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。112、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。113、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。114、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。115、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。116、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。117、1,2,4,3,5,6,9,18,()

A、14

B、24

C、27

D、36

【答案】:答案:A

解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、18构成积数列,即所填的奇数项应为5+9=14。故选A。118、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。119、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。120、一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是一个偶数。请你帮助小明计算一下,他答错了多少道题?()

A、3

B、4

C、5

D、6

【答案】:答案:A

解析:设答对x道,答错y道,未答z道,根据共有20道题,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x为偶数,23为奇数,故y为奇数,排除B、D。代入A选项,可得2x-3=23,解得x=13,此时z=4,符合未答题目数是偶数。故选A。121、四人年龄为相邻的自然数列且最年长者不超过30岁,四人年龄之乘积能被2700整除且不能被81整除。则四人中最年长者多少岁?()

A、30

B、29

C、28

D、27

【答案】:答案:C

解析:结合最年长者,优先从选项最大值代入:A选项:30×29×28×27,尾数只有一个0,不能被2700整除,排除;B选项:29×28×27×26,尾数不为0,不能被2700整除,排除;C选项:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正确。故选C。122、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。123、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。124、8,3,17,5,24,9,26,18,30,()

A、22

B、25

C、33

D、36

【答案】:答案:B

解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,(55=30+25)。故选B。125、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。126、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。127、9,20,42,86,(),350

A、172

B、174

C、180

D、182

【答案】:答案:B

解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。128、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可转化为1296÷36-18÷36=36-0.5=35.5。故选B。129、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。130、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。131、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。132、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。133、1/2,1,1,(),9/11,11/13

A、2

B、3

C、1

D、9

【答案】:答案:C

解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。134、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。135、2.1,2.2,4.1,4.4,16.1,()

A、32.4

B、16.4

C、32.16

D、16.16

【答案】:答案:D

解析:偶数项的小数部分和整数部分相同。故选D。136、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:数列是公比为6的等比数列,则所求项为216×6=1296(也可用尾数法,尾数为6)。故选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论