二元一次方程整数解及其应用浅析_第1页
二元一次方程整数解及其应用浅析_第2页
二元一次方程整数解及其应用浅析_第3页
二元一次方程整数解及其应用浅析_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程整数解及其应用浅析在人教版七年级下册数学课本第112页的拓广探索训练中有一个题目为:现有1角、5角、1元硬币各10枚。从中取出15枚,共值7元。1角、5角、1元硬币各取多少枚?初看这道题目,可能绝大部分学生能比较顺利的列出两个等量关系式:1角硬币数量+5角硬币数量+1元硬币数量=15,1角硬币钱数+5角硬币钱数+1元硬币钱数=7,进而可以列出两个三元一次方程:x+y+z=15①;0.1x+0.5y+z=7②。但是如何求解,可能是很多学生所未曾遇到过的。如何求解呢?这儿就不可避免的应用到二元一次方程的非负整数解。二元一次方程的解有无数组,但在实际应用中,我们往往只需要求出其非负整数解。下面试举几例以供参考:例1.小虎子有一张面值为10元的人民币,他想换成1元或2元的人民币,请你想一想,可能有几种兑换方法?解:设可换成1元的人民币x张,2元的人民币y张,则x+2y=10。∵x、y只能取非负整数。∴其非负整数解为:x=0y=5,x=2y=4,x=4y=3,x=6y=2,x=8y=1,x=10y=0。所以有6种兑换方法,分别为5张2元;2张1元和4张2元;4张1元和3张2元;6张1元和2张2元;8张1元和1张2元;10张1元。例2.如果x、y为不等于0的自然数,且3x?3y=27,试求xy的值。分析:由27=33,可得3x?3y=33,根据幂的性质可得x+y=3,再由x、y为不等于0的自然数可确定x、y的值。解:因为3x?3y=27,即3x+y=33,所以x+y=3;又因为x、y为不等于0的自然数,所以有x=1y=2或x=2y=1;所以xy=1×2=2或xy=2×1=2。综上所得:xy=2。点评:因为x、y为不等于0的自然数,所以本题实际上是求x+y=3的整数解。在近几年的中考题目中,也已经出现了类似题型的考查。例3.(2013?绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载。有_______种租车方案。解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据题意得,8x+4y=20,整理得,2x+y=5,∵x、y都是正整数,∴x=1时,y=3,x=2时,y=1,x=3时,y=-1(不符合题意,舍去),所以,共有2种租车方案。点评:本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数。由此我们可以看出,二元一次方程虽然具有无数组解,但在特定条件下整数解是可以求出的,从而可以用来解决一些生活中的实际问题。同样,借鉴“消元”思想和二元一次方程整数解我们就可以顺利解出刚才的硬币问题。我们可以将方程x+y+z=15①,0.1x+0.5y+z=7②通过消x得到一个二元一次方程:4y+9z=55,利用题目中隐含的x、y、z只能取非负整数解条件,我们可以求出:y=7,z=3,进而求出x=5,至此我们就可以求出该题的答案为:1角硬币5枚、5角硬币7枚、1元硬币3枚。对于此类题目,我们可以采用以下解题过程:列两个三元一次方程→(消元)二元一次方程→求整数解→

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论