2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题含解析_第1页
2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题含解析_第2页
2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题含解析_第3页
2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题含解析_第4页
2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省温州市环大罗山联盟高一数学第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.2.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=123.已知内角的对边分别为,满足且,则△ABC()A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形4.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.5.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.6.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元7.如果直线m//直线n,且m//平面α,那么n与αA.相交 B.n//α C.n⊂α8.若,,与的夹角为,则的值是()A. B. C. D.9.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.10.在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,则平面四边形OACB面积的最大值是()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值为_______.12.设满足不等式组,则的最小值为_____.13.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.14.已知为锐角,,则________.15.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________16.正方体中,异面直线和所成角的余弦值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解答下列问题:(1)求平行于直线3x+4y-2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是的直线方程.18.若不等式的解集为.(1)求证:;(2)求不等式的解集.19.已知函数,.(1)求函数的值域;(2)若恒成立,求m的取值范围.20.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,离心率为12,过F1的直线l(1)求椭圆C的方程;(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【点睛】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.2、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.3、B【解析】

根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【详解】在中,因为,所以,又,所以,又当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【点睛】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.4、C【解析】

根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.5、C【解析】

以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.6、B【解析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程7、D【解析】

利用直线与平面平行的判定定理和直线与平面平行的性质进行判断即可.【详解】∵直线m/直线n,且m/平面∴当n不在平面α内时,平面α内存在直线m'//m⇒n//m',符合线面平行的判定定理可得n/平面α当n在平面α内时,也符合条件,n与α的位置关系是n//α或【点睛】本题主要考查线面平行的判定定理以及线面平行的性质,意在考查对基本定理掌握的熟练程度,属于基础题.8、C【解析】

由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.9、A【解析】,,,故选A.10、A【解析】

根据正弦和角公式化简得是正三角形,再将平面四边形OACB面积表示成的三角函数,利用三角函数求得最值.【详解】由已知得:即所以即又因为所以所以又因为所以是等边三角形.所以在中,由余弦定理得且因为平面四边形OACB面积为当时,有最大值,此时平面四边形OACB面积有最大值,故选A.【点睛】本题关键在于把所求面积表示成角的三角函数,属于难度题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

运用基本不等式求出结果.【详解】因为,所以,,所以,所以最小值为【点睛】本题考查了基本不等式的运用求最小值,需要满足一正二定三相等.12、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.13、【解析】

画出示意图,利用正弦定理求解即可.【详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【点睛】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.14、【解析】

利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.15、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.16、【解析】

由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x-y-3=1【解析】

试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解析:解:(1)设所求直线上任意一点P(x,y),由题意可得点P到直线的距离等于1,即,∴3x+4y-2=±5,即3x+4y+3=1或3x+4y-7=1.(2)所求直线方程为,由题意可得点P到直线的距离等于,即,∴或,即3x-y+9=1或3x-y-3=1.考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系18、(1)证明见解析(2)【解析】

(1)由已知可得是的两根,利用韦达定理,化简可得结论;(2)结合(1)原不等式可化为,利用一元二次不等式的解法可得结果.【详解】(1)∵不等式的解集为∴是的两根,且∴∴,所以;(2)因为,,所以,即,又即,解集为【点睛】本题考查了求一元二次不等式的解法,是基础题目.若,则的解集是;的解集是.19、(1);(2)或.【解析】

(1)根据用配方法求出二次函数对称轴横坐标,可得最小值,再代入端点求得最大值,可得函数的值域;(2)由(1)可得的最大值为6,转化为求恒成立,求出m的取值范围即可.【详解】(1)因为,而,,,所以函数的值域为.(2)由(1)知,函数的值域为,所以的最大值为6,所以由得,解得或,故实数m的取值范围为或.【点睛】本题考查二次函数的值域及最值,不等式恒成立求参数取值范围,二次函数最值问题通常求出对称轴横坐标代入即可求得最值,由不等式恒成立求参数取值范围可转化为函数最值不等式问题,属于中等题.20、(1)(–5,–4)(2)【解析】

(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.21、(1)x2【解析】

(1)根据三角形周长为1,结合椭圆的定义可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得椭圆方程;(2)分类讨论,当直线斜率斜存在时,联立y=kx+b【详解】(1)由题意知,4a=1,则a=2,由椭圆离心率e=ca=∴椭圆C的方程x2(2)由题意,当直线AB的斜率不存在,此时可设A(x3,x3),B(x3,-x3).又A,B两点在椭圆C上,∴x0∴点O到直线AB的距离d=12当直线AB的斜率存在时,设直线AB的方程为y=kx+b.设A(x1,y1),B(x2,y2)联立方程y=kx+bx24+y23由已知△>3,x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论