版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省泰兴市实验初中高一数学第二学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.2.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.73.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知:,,若函数和有完全相同的对称轴,则不等式的解集是A. B.C. D.5.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.6.过点A(3,3)且垂直于直线的直线方程为A. B. C. D.7.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或8.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.9.已知向量,,则向量的夹角的余弦值为()A. B. C. D.10.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,每小题5分,共30分。11.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.12.已知函数在一个周期内的图象如图所示,则的解析式是______.13.已知,,则________.14.在等比数列中,若,则__________.15.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)16.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前项和为,且(是常数,),.(1)求的值及数列的通项公式;(2)设,求数列的前项和为.18.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.19.四棱锥中,,,底面,,直线与底面所成的角为,、分别是、的中点.(1)求证:直线平面;(2)若,求证:直线平面;(3)求棱锥的体积.20.某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:,.21.若的最小值为.(1)求的表达式;(2)求能使的值,并求当取此值时,的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.2、D【解析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.3、C【解析】
由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.4、B【解析】
,所以因此,选B.5、B【解析】
试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.6、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.7、D【解析】
首先根据余弦定理,得到或.再分别计算即可.【详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【点睛】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.8、C【解析】
根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题9、C【解析】
先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.10、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,
得,得.
当且仅当时,有最大值1.
过球心,且四面体的体积为1,
∴三棱锥的体积为.
则到平面的距离为.
此时的外接圆的半径为,则球的半径的最小值为,
∴球O的表面积的最小值为.
故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.12、【解析】
由图象得出,得出该函数图象的最小正周期,可得出,再将点的坐标代入函数的解析式,结合该函数在附近的单调性求得的表达式,即可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,,则,由于函数的图象过点,且在附近单调递增,所以,,,因此,.故答案为:.【点睛】本题考查利用三角函数的图象求解析式,一般要结合图象依次求出、、的值,在利用对称中心求时,要结合函数在对称中心附近的单调性来求解,考查计算能力,属于中等题.13、【解析】
由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.14、80【解析】
由即可求出【详解】因为是等比数列,所以,所以即故答案为:80【点睛】本题考查的是等比数列的性质,较简单15、②③④【解析】
根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.16、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差数列的公差,于此可求出等差数列的通项公式;(2)先求出数列的通项公式,再利用错位相减法求出数列的前项和.【详解】(1)因为,所以当时,,解得.当时,,即.解得,所以,解得,则.数列的公差.所以;(2)因为,所以,①,②由①-②可得,所以.【点睛】本题考查等差数列通项的求解,考查错位相减法求和,解题时要注意错位相减求和法所适用数列通项的结构类型,要熟练错位相减法求和的基本步骤,难点在于计算量较大,属于中等题.18、(1);(2)或1【解析】
由向量共线的坐标运算得:设,可得,又因为,,即.由题意结合向量加减法与数量积的运算化简得,所以,运算可得解.【详解】,因为C是AB所在直线上一点,设,可得,又因为,所以,解得,所以,故答案为且,显然,所以,,又所以,即,所以,所以即,解得:或,故答案为或1.【点睛】本题考查了向量共线的坐标运算及平面向量数量积的运算,属于中档题.19、(1)见解析(2)见解析(3)【解析】
(1)由中位线定理可得,,再根据平行公理可得,,即可根据线面平行的判定定理证出;(2)根据题意可计算出,而是的中点,可得,又,即可根据线面垂直的判定定理证出;(3)根据等积法,即可求出.【详解】(1)证明:连接,,,、是、中点,,从而.又平面,平面,直线平面;(2)证明:,,.底面,直线与底面成角,..是的中点,.,.面,面,直线平面;(3)由题可知,,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理的应用,以及利用等积法求三棱锥的体积,意在考查学生的直观想象能力,逻辑推理能力和转化能力,属于基础题.20、(1)(2)可以预测产量为(吨)的生产能耗为(吨)【解析】
(1)根据表格中的数据,求出,,,代入回归系数的公式可求得,再根据回归直线过样本中心点即可求解.由(1)将代入即可求解.【详解】(1)由题意,根据表格中的数据,求得,,,,代入回归系数的公式,求得,则,故线性回归方程为.(2)由(1)可知,当时,,则可以预测产量为(吨)的生产能耗为(吨).【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏州站施工组织设计方案(幕墙)
- 二零二五年度金融行业IT运维安全保障协议3篇
- 专业化海路物流合作合同(2024版)版B版
- 2025年度环保建筑材料推广合作框架协议4篇
- 2025年度购物中心场地合作开发及商业运营合同4篇
- 二零二四图书购置项目与图书馆无障碍阅读服务合同3篇
- 2025年度智能摊位管理系统开发与实施合同4篇
- 2025年度剧本创作与版权授权管理合同3篇
- 二零二五版4S店汽车销售合同样本图2篇
- 2025年度农产品质量安全追溯体系服务合同4篇
- 衡水市出租车驾驶员从业资格区域科目考试题库(全真题库)
- 护理安全用氧培训课件
- 《三国演义》中人物性格探析研究性课题报告
- 注册电气工程师公共基础高数辅导课件
- 土方劳务分包合同中铁十一局
- 乳腺导管原位癌
- 冷库管道应急预案
- 司法考试必背大全(涵盖所有法律考点)
- 公共部分装修工程 施工组织设计
- 《学习教育重要论述》考试复习题库(共250余题)
- 装饰装修施工及担保合同
评论
0/150
提交评论