版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市济钢高级中学2025届高一下数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对任意实数x,表示不超过x的最大整数,如,,关于函数,有下列命题:①是周期函数;②是偶函数;③函数的值域为;④函数在区间内有两个不同的零点,其中正确的命题为()A.①③ B.②④ C.①②③ D.①②④2.已知分别是的内角的的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.184.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.5.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.16.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是()A.①③④ B.②④ C.②③④ D.①②③7.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为弧田面积,弧田(如图所示)由圆弧和其所对的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径为6米的弧田,按照上述经验公式计算所得弧田面积大约是()()A.16平方米 B.18平方米C.20平方米 D.24平方米8.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.9.若实数满足约束条件则的最大值与最小值之和为()A. B. C. D.10.在边长为的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.12.若直线与直线互相平行,那么a的值等于_____.13.已知,则_________.14.已知,,,则在方向上的投影为__________.15.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.16.若复数(为虚数单位),则的共轭复数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.18.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.19.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.20.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.21.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据的表达式,结合函数的周期性,奇偶性和值域分别进行判断即可得到结论.【详解】是周期函数,3是它的一个周期,故①正确.,结合函数的周期性可得函数的值域为,则函数不是偶函数,故②错误.,故在区间内有3个不同的零点,故④错误.故选:A【点睛】本题考查了取整函数综合问题,考查了学习综合分析,转化与划归,数学运算的能力,属于难题.2、A【解析】
由已知结合正弦定理可得利用三角形的内角和及诱导公式可得,整理可得从而有结合三角形的性质可求【详解】解:是的一个内角,,由正弦定理可得,又,,即为钝角,故选A.【点睛】本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础试题.3、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图4、B【解析】
模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.5、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.6、A【解析】
分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.7、C【解析】分析:根据已知数据分别计算弦和矢的长度,再按照弧田面积经验公式计算,即可得到答案.详解:由题可知,半径,圆心角,弦长:,弦心距:,所以矢长为.按照弧田面积经验公式得,面积故选C.点睛:本题考查弓形面积以及古典数学的应用问题,考查学生对题意的理解和计算能力.8、A【解析】
根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、A【解析】
首先根据不等式组画出对应的可行域,再分别计算出顶点的坐标,带入目标函数求出相应的值,即可找到最大值和最小值.【详解】不等式组对应的可行域如图所示:,.,.,,.,,.故选:A【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于简单题.10、A【解析】
通过几何概型可得答案.【详解】由几何概型可知,则.【点睛】本题主要考查几何概型的相关计算,难度中等.二、填空题:本大题共6小题,每小题5分,共30分。11、(4,5)4.【解析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.12、;【解析】由题意得,验证满足条件,所以13、.【解析】
在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.14、【解析】
根据数量积的几何意义计算.【详解】在方向上的投影为.故答案为:1.【点睛】本题考查向量的投影,掌握投影的概念是解题基础.15、【解析】
由三角函数的定义求出点的坐标,然后求向量的坐标.【详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【点睛】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.16、【解析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.18、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【点睛】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.19、(1);(2);(3)当时,;当或时,.【解析】
(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【点睛】本题考查平面向量坐标的线性运算,同时也考查等差数列求和以及数列极限的运算,计算时要充分利用数列极限的运算法则进行求解,综合性较强,属于中等题.20、(1)证明见解析;(2).【解析】
(1)由平面得出,由底面为正方形得出,再利用直线与平面垂直的判定定理可证明平面;(2)由勾股定理计算出,由点为线段的中点得知点到平面的距离等于,并计算出的面积,最后利用锥体的体积公式可计算出三棱锥的体积.【详解】(1)平面,平面,,又为正方形,,又平面,平面,,平面;(2)由题意知:,又,,,点到面的距离为,.【点睛】本题考查直线与平面垂直的判定,考查三棱锥体积的计算,在计算三棱锥的体积时,充分利用题中的线面垂直关系和平面与平面垂直的关系,寻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能建筑工程合同协议书
- 2024年农田租赁协议书
- 电子密码锁键盘课程设计
- 水电管理课课程设计
- 电网规划课程设计
- 2024至2030年中国老盐菜数据监测研究报告
- 门式刚架柱体系课程设计
- 课程设计与健康教育
- 2024年羊毛衫项目可行性研究报告
- 2024年染色耐洗试验机项目可行性研究报告
- 2024-2030年中国门禁机市场发展趋势及前景运行战略规划报告
- TCHAS 10-2-1-2023 中国医院质量安全管理 第2-1部分:患者服务患者安全目标
- 六年级英语上册 Module 8 Unit 2 I often go swimming教案2 外研版(三起)
- 全国职业院校技能大赛高职组(供应链管理赛项)备赛试题库(含答案)
- 滴灌安装工程合同2024年
- 小区业主微信群管理规约
- HG∕T 2469-2011 立式砂磨机 标准
- 2024考研英语二试题及答案解析
- 2023辽宁公务员考试《行测》真题(含答案及解析)
- 《咖啡知识》课件
- 2024年贵州退役军人事务厅事业单位笔试真题
评论
0/150
提交评论