版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省定西市岷县二中2025届高一数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.2.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°3.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.4.函数的最小值为(
)A.6 B.7 C.8 D.95.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.6.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.7.设双曲线的左右焦点分别是,过的直线交双曲线的左支于两点,若,且,则双曲线的离心率是()A. B. C. D.8.直线的斜率是()A. B. C. D.9.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.4810.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值为__________.12.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;13.经过点,且在两坐标轴上的截距之和为2的直线的一般式方程为________.14.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.15.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)16.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.18.已知函数(其中,)的最小正周期为,且图象经过点(1)求函数的解析式:(2)求函数的单调递增区间.19.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.20.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.21.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.2、B【解析】
根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【点睛】本题考查斜率和倾斜角的关系,是基础题.3、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.4、C【解析】
直接利用均值不等式得到答案.【详解】,时等号成立.故答案选C【点睛】本题考查了均值不等式,属于简单题.5、A【解析】
根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.6、C【解析】
利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.7、C【解析】,则,所以,,则,所以,故选C。点睛:离心率问题关键是利用圆锥曲线的几何性质,以及三角形的几何关系来解决,本题中,由双曲线的几何性质,可以将图中的各边长都表示出来,再利用同一个角在两个三角形中的余弦定理,就可以得到的等量关系,求出离心率。8、A【解析】
一般式直线方程的斜率为.【详解】直线的斜率为.故选A【点睛】此题考察一般直线方程的斜率,属于较易基础题目9、B【解析】
根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.10、A【解析】
分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.12、(1)(3)【解析】
根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错;故答案为(1)(3)【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.13、【解析】
由题可知,直线在x上轴截距为-3,再利用截距式可直接求得直线方程【详解】∵直线过(0,5),∴直线在y轴上的截距为5,又直线在两坐标轴上的截距之和为2,∴直线在x轴上的截距为2-5=-3∴直线方程为,即5x-3y+15=0【点睛】直线方程有五种基本形式,在只知道横纵截距的情况下,截距式是最快捷的一种方式14、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。15、3.1【解析】
根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。16、【解析】
首先根据三视图还原几何体,再计算体积即可.【详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【点睛】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调增区间为,;单调减区间为.【解析】
(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,即可得出该函数的解析式;(2)根据平移变换得出,再由函数的图象经过点,结合正弦函数的性质得出的最小值,进而得出,利用整体法结合正弦函数的单调性得出该函数在上的单调区间.【详解】解:(1)由已知函数的周期,,∴.(2)将的图象向左平移个长度单位得到的图象∴,∵函数的图象经过点∴,即∴,∴,∵,∴当,取最小值,此时最小值为此时,.令,则当或,即当或时,函数单调递增当,即时,函数单调递减.∴在上的单调增区间为,;单调减区间为.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.18、(1);(2),.【解析】
(1)根据最小正周期可求得;代入点,结合的范围可求得,从而得到函数解析式;(2)令,解出的范围即为所求的单调递增区间.【详解】(1)最小正周期过点,,解得:,的解析式为:(2)由,得:,的单调递增区间为:,【点睛】本题考查根据三角函数性质求解函数解析式、正弦型函数单调区间的求解;关键是能够采用整体对应的方式来利用正弦函数的最值和单调区间求解正弦型函数的解析式和单调区间.19、(1)证明见解析(2)【解析】
(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.
(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】
(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则即,所以是锐角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面积为.【点睛】本题考查正弦定理和余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学数学基础知识体系的构建与教学方法
- 2025年度个人教育贷款延期支付合同3篇
- 教育领域中工业互联网的安全培训与推广
- 2025年度个人住房贷款利率调整协议合同范本4篇
- 二零二五年度车辆借用及道路救援服务合同3篇
- 二零二五年度餐饮企业员工培训与职业发展合同6篇
- 江苏2025年江苏卫生健康职业学院博士专项招聘13人笔试历年参考题库附带答案详解
- 永州2025年湖南永州市零陵区引进急需紧缺专业人才66人笔试历年参考题库附带答案详解
- 楚雄2025年第一批云南楚雄南华县紧密型县域医共体招聘编制外工作人员笔试历年参考题库附带答案详解
- 探究式课堂中的教师角色与教学策略
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 老客户的开发与技巧课件
- 计算机江苏对口单招文化综合理论试卷
- 成人学士学位英语单词(史上全面)
- 26个英文字母书写(手写体)Word版
- KAPPA-实施方法课件
- GB/T 13813-2023煤矿用金属材料摩擦火花安全性试验方法和判定规则
- GB/T 33084-2016大型合金结构钢锻件技术条件
- 高考英语课外积累:Hello,China《你好中国》1-20词块摘录课件
- 航道整治课程设计
- 抖音品牌视觉识别手册
评论
0/150
提交评论