2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题含解析_第1页
2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题含解析_第2页
2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题含解析_第3页
2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题含解析_第4页
2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省淮安市重点中学数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中是偶函数且最小正周期为的是()A. B.C. D.2.直线的倾斜角为()A. B. C. D.3.如图所示,向量,则()A. B. C. D.4.的内角、、所对的边分别为、、,下列命题:(1)三边、、既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5),,若唯一确定,则.其中,正确命题是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)5.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.6.过点的圆的切线方程是()A. B.或C.或 D.或7.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥8.下列函数中周期为,且图象关于直线对称的函数是()A. B.C. D.9.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.10.某小吃店的日盈利(单位:百元)与当天平均气温(单位:℃)之间有如下数据:/℃/百元对上述数据进行分析发现,与之间具有线性相关关系,则线性回归方程为()参考公式:A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆与圆的公共弦长为,则________.12.一组样本数据8,10,18,12的方差为___________.13.求的值为________.14.数列的前项和为,,,则________.15.数列中,,,,则的前2018项和为______.16.已知球为正四面体的外接球,,过点作球的截面,则截面面积的取值范围为____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若不等式恒成立,求实数a的取值范围。18.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.20.如图,在边长为2菱形ABCD中,,且对角线AC与BD交点为O.沿BD将折起,使点A到达点的位置.(1)若,求证:平面ABCD;(2)若,求三棱锥体积.21.已知数列的前项和为,且满足.(1)求证:数列是等比数列;(2)设,数列的前项和为,求证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【点睛】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.2、C【解析】

由直线方程求出直线的斜率,即得倾斜角的正切值,从而求出倾斜角.【详解】设直线的倾斜角为,由,得:,故中直线的斜率,∵,∴;故选C.【点睛】本题考查了直线的倾斜角与斜率的问题,是基础题.3、A【解析】

根据平面向量的加法的几何意义、平面向量的基本定理、平面向量数乘运算的性质,结合进行求解即可.【详解】.故选:A【点睛】本题考查了平面向量基本定理及加法运算的几何意义,考查了平面向量数乘运算的性质,属于基础题.4、A【解析】

由等差数列和等比数列中项性质可判断(1);由正弦定理和二倍角公式、诱导公式,可判断(2);由三角形的边角关系和余弦函数的单调性可判断(3);由余弦定理和基本不等式可判断(4);由正弦定理和三角形的边角关系可判断(5).【详解】解:若、、既成等差数列,又成等比数列,则,,则,得,得,得,则是等边三角形,故(1)正确;若,则,则,则或,即或,则△ABC是等腰或直角三角形,故(2)错误;若,则,则,故(3)正确;若,则,则,由得,则,则,故(4)正确;若,,则,即,又,若唯一确定,则或,则或,故(5)错误;故选:A.【点睛】本题主要考查正弦定理和余弦定理的运用,以及三角形的形状的判断,考查化简运算能力,属于中档题.5、D【解析】

根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.6、D【解析】

先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【点睛】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.7、D【解析】

当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D8、B【解析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.考点:三角函数性质9、A【解析】

根据题意,原题等价于,再讨论即可得到结论.【详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【点睛】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.10、B【解析】

计算出,,把数据代入公式计算,即可得到答案.【详解】由题可得:,,,,;所以,,则线性回归方程为;故答案选B【点睛】本题考查线性回归方程的求解,考查学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.12、14【解析】

直接利用平均数和方差的公式,即可得到本题答案.【详解】平均数,方差.故答案为:14【点睛】本题主要考查平均数公式与方差公式的应用.13、44.5【解析】

通过诱导公式,得出,依此类推,得出原式的值.【详解】,,同理,,故答案为44.5.【点睛】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.14、18【解析】

利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、2【解析】

直接利用递推关系式和数列的周期求出结果即可.【详解】数列{an}中,a1=1,a2=2,an+2=an+1﹣an,则:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:数列的周期为1.a1+a2+a2+a4+a5+a1=0,数列{an}的前2018项和为:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案为:2【点睛】本题考查的知识要点:数列的递推关系式的应用,数列的周期的应用,主要考查学生的运算能力和转化能力,属于基础题.16、【解析】

在平面中,过圆内一点的弦长何时最长,何时最短,类比在空间中,过球内一点的球的大圆面积最大,与此大圆垂直的截面小圆面积最小.利用正四面体的性质及球的性质求正四面体外接球的半径、小圆半径,确定答案.【详解】因为正四面体棱长为AB=3,所以正四面体外接球半径R=.由球的性质,当过E及球心O时的截面为球的大圆,面积最大,最大面积为;当过E的截面与EO垂直时面积最小,取△BCD的中心,因为为正四面体,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以过E且与EO垂直的截面圆的半径r为,截面面积为.所以所求截面面积的范围是.【点睛】本题考查空间想象能力,逻辑推理能力,空间组合体的关系,正四面体、球的性质,考查计算能力,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

恒成立的条件下由于给定了的范围,故可考虑对进行分类,同时利用参变分离法求解的范围.【详解】由题意得(1),时,恒成立(2),等价于又∴∴实数a的取值范围是【点睛】含有分式的不等式恒成立问题,要注意到分母的正负对于不等号的影响;若是变量的范围给出了,可针对于变量的范围做具体分析,然后去求解参数范围.18、(1)见解析;(2)40.00(mm)【解析】解:(1)频率分布表如下:分组

频数

频率

[39.95,39.97)

10

0.10

5

[39.97,39.99)

20

0.20

10

[39.99,40.01)

50

0.50

25

[40.01,40.03]

20

0.20

10

合计

100

1

注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.频率分布直方图如下:(2)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).19、(1)详见解析;(2);(3)详见解析.【解析】

(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)见解析(2)【解析】

(1)证明与即可.(2)法一:证明平面,再过点做垂足为,证明为三棱锥的高再求解即可.法二:通过进行转化求解即可.法三:通过进行转化求解即可.【详解】证明:(1)∵在菱形ABCD中,,,AC与BD交于点O.以BD为折痕,将折起,使点A到达点的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中点,则且,因为且,,所以平面,过点做垂足为,则平面BCD,又∴,解得,∴三棱锥体积.(法二):因为,,取AC中点E,,,,又(法三)因为且,,所以平面,,所以.【点睛】本题主要考查了线面垂直的证明与锥体体积的求解方法等.需要根据题意找到合适的底面与高,或者利用割补法求解体积.属于中档题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论