版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省仙游金石中学高一下数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,设向量与的夹角为,若,则的取值范围是()A. B. C. D.2.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.3.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.4.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.5.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.6.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.函数,若方程恰有三个不同的解,记为,则的取值范围是()A. B. C. D.8.已知,则下列不等式中成立的是()A. B. C. D.9.在空间四边形中,分别是的中点.若,且与所成的角为,则四边形的面积为()A. B. C. D.10.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______12.在中,三个角所对的边分别为.若角成等差数列,且边成等比数列,则的形状为_______.13.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.14.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.15.已知向量、的夹角为,且,,则__________.16.已知点在直线上,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,,.(1)求数列的通项公式;(2)设,求数列的前项和.18.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.19.在△ABC中,内角A、B、C所对的边分别为a、b、c,,.(1)若,求△ABC的周长;(2)若CD为AB边上的中线,且,求△ABC的面积.20.若关于的不等式对一切实数都成立,求实数的取值范围.21.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据向量与的夹角的余弦值,得到,然后利用正弦定理,表示出,根据的范围,得到的范围.【详解】因为向量与的夹角为,且,所以,在中,由正弦定理,得,所以,因为,所以,所以.故选:A.【点睛】本题考查向量的夹角,正弦定理解三角形,求正弦函数的值域,属于简单题.2、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.3、D【解析】
求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.4、A【解析】
先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.5、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.6、D【解析】
根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.7、D【解析】
由方程恰有三个不同的解,作出的图象,确定,的取值范围,得到的对称性,利用数形结合进行求解即可.【详解】设
作出函数的图象如图:由
则当
时
,,
即函数的一条对称轴为
,要使方程恰有三个不同的解,则
,
此时
,
关于
对称,则
当
,即
,则
则
的取值范围是,选D.【点睛】本题主要考查了方程与函数,数学结合是解决本题的关键,数学结合也是数学中比较重要的一种思想方法.8、D【解析】
由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.9、A【解析】
连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD.同理,FG∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD=a,AC与BD所成的角为60°所以EF=EH.所以四边形EFGH为菱形,∠EFG=60°.∴四边形EFGH的面积是2××()2=a2故答案为a2,故选A.考点:本题主要是考查的知识点简单几何体和公理四,公理四:和同一条直线平行的直线平行,证明菱形常用方法是先证明它是平行四边形再证明邻边相等,以及面积公式属于基础题.点评:解决该试题的关键是先证明四边形EFGH为菱形,然后说明∠EFG=60°,最后根据三角形的面积公式即可求出所求.10、A【解析】
由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】
分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.12、等边三角形【解析】
分析:角成等差数列解得,边成等比数列,则,再根据余弦定理得出的关系式.详解:角成等差数列,则解得,边成等比数列,则,余弦定理可知故为等边三角形.点睛:判断三角形形状,是根据题意推导边角关系的恒等式.13、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.14、②③⑤【解析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.15、【解析】
根据向量的数量积的应用进行转化即可.【详解】,与的夹角为,∴•||||cos4,则,故答案为.【点睛】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.16、5【解析】
由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)设等差数列的公差为,根据题中条件列有关和的方程组,求出和,即可求出等差数列的通项公式;(2)将数列的通项公式裂项,然后利用裂项求和法求出数列的前项和。【详解】(1)设等差数列的公差为,由可得,解得,;(2),。【点睛】本题考查等差数列通项公式、裂项求和法,在求解等差数列的通项公式时,一般利用方程思想求出等差数列的首项和公差求出通项公式,在求和时要根据数列通项的基本结构选择合适的求和方法对数列求和,属于常考题型,属于中等题。18、(1),(2)【解析】
(1)首先利用二倍角公式及两角和差的正弦公式化简得到,再根据正弦函数的性质求出函数的对称轴;(2)由,求出的值域,设,则.则当时,不等式恒成立,等价于对于恒成立,则解得即可;【详解】解:(1).即令,解得,则图象的对称轴方程为,(2)当时,,则,从而,设,则.当时,不等式恒成立,等价于对于恒成立,则解得.故m的取值范围为.【点睛】本题考查两角和与差的正弦公式,考查三角变换与辅助角公式的应用,突出考查正弦函数的性质以及一元二次不等式在给定区间上恒成立问题,属于中档题.19、(1)(2)【解析】
(1)由正弦定理可得,再结合余弦定理可得,再求边长即可得解;(2)由余弦定理可得,再利用三角形面积公式求解即可.【详解】解:(1)因为,所以,即,即,即,即,又,则,则,又,则,即,即△ABC的周长为;(2)因为,,在中,由余弦定理可得:,则,即,即,所以.【点睛】本题考查了正弦定理及余弦定理的应用,重点考查了三角形的面积公式,属中档题.20、【解析】
对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.21、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型活动场所临时污水管网方案
- 幼儿园煤气合同(2篇)
- 自拍杆手持单脚架项目营销计划书
- 摄影协会会籍申请合同
- 信用证发行行业相关项目经营管理报告
- 种子发芽器项目营销计划书
- 食品行业2吨反渗透水处理方案
- 轻便大衣市场发展前景分析及供需格局研究预测报告
- 消防设施检测与评估方案
- 为病人诊断和治疗进行医疗分析行业经营分析报告
- 跌倒的护理 (养老护理员培训课件)
- 船舶租赁尽职调查
- 统编教学小学语文课外阅读《细菌世界历险记》导读课课件
- 植物生理学-植物的逆境生理
- 【课件】比的基本性质
- 小学英语人教新起点五年级上册Unit3Animalsunit3storytime
- 2023年江苏省淮安市中考化学试卷
- 医疗质量管理与持续改进工作记录
- 小学英语名师工作室工作计划2篇
- 中国旅游嘉兴风土人情城市介绍旅游攻略PPT图文课件
- 出口退税培训课件
评论
0/150
提交评论