2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题含解析_第1页
2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题含解析_第2页
2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题含解析_第3页
2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题含解析_第4页
2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省保定市博野中学数学高一下期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若x+2y=4,则2x+4y的最小值是()A.4 B.8 C.2 D.42.等比数列中,,,则公比等于()A.2 B.3 C. D.3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.14.已知实数x,y满足约束条件,那么目标函数的最大值是()A.0 B.1 C. D.105.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为().A. B. C.50 D.6.若,则下列正确的是()A. B.C. D.7.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°8.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.9.已知角的顶点在原点,始边与轴的正半轴重合,终边落在射线上,则()A. B. C. D.10.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是等差数列的前项和,若,则________12.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区域由所有满足的点组成,则的面积是__________.13.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).14.若是等比数列,,,则________15.命题“数列的前项和”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母)16.在中,角所对的边分别为,,则____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知(1)求;(2)若为锐角三角形,且边,求面积的取值范围.18.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.19.已知,,,求.20.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.21.已知为锐角,.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由,当且仅当时,即等号成立,故选B.考点:基本不等式.2、A【解析】

由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.3、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m4、D【解析】

根据约束条件,画出可行域,再平移目标函数所在的直线,找到最优点,将最优点的坐标代入目标函数求最值.【详解】画出可行域(如图),平移直线,当目标直线过点时,目标函数取得最大值,.故选:D【点睛】本题主要考查线性规划求最值问题,还考查了数形结合的思想,属于基础题.5、C【解析】

根据长方体的外接球性质及球的表面积公式,化简即可得解.【详解】根据长方体的外接球直径为体对角线长,则,所以,则由球的表面积公式可得,故选:C.【点睛】本题考查了长方体外接球的性质及球表面积公式应用,属于基础题.6、D【解析】

由不等式的性质对四个选项逐一判断,即可得出正确选项,错误的选项可以采用特值法进行排除.【详解】A选项不正确,因为若,,则不成立;B选项不正确,若时就不成立;C选项不正确,同B,时就不成立;D选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变,故选D.【点睛】本题主要考查不等关系和不等式的基本性质,求解的关键是熟练掌握不等式的运算性质.7、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.8、C【解析】

根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.9、D【解析】

在的终边上取点,然后根据三角函数的定义可求得答案.【详解】在的终边上取点,则,根据三角形函数的定义得.故选:D【点睛】本题考查了利用角的终边上的点的坐标求三角函数值,属于基础题.10、A【解析】

根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】,所以点平面区域是底面内以为圆心,以1为半径的外面区域,则的面积是13、6【解析】

先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.15、数列为等差数列且,.【解析】

根据题意,设该数列为,由数列的前项和公式分析可得数列为等差数列且,,反之验证可得成立,综合即可得答案.【详解】根据题意,设该数列为,若数列的前项和,则当时,,当时,,当时,符合,故有数列为等差数列且,,反之当数列为等差数列且,时,,;故数列的前项和”成立的充要条件是数列为等差数列且,,故答案为:数列为等差数列且,.【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.16、【解析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用正弦定理边化角,再利用和角的正弦公式化简即得B的值;(2)先根据已知求出,再求面积的取值范围.【详解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若为锐角三角形,且,由余弦定理可得,由三角形为锐角三角形,可得且解得,可得面积【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的取值范围的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】

(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4个球的分别有,人,则解得.故投进3个球和4个球的分别有2人和2人.(2)若要使进球数之和为8,则1人投进3球,另1人投进5球或2人都各投进4球.记投进3球的2人为,;投进4球的2人为,;投进5球的2人为,.则从这6人中任选2人的所有可能事件为:,,,,,,,,,,,,,,.共15种.其中进球数之和为8的是,,,,,有5种.所以这2人进球数之和为8的概率为.【点睛】本题主要考查平均数的计算和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、11【解析】

根据题设条件,结合三角数的基本关系式,分别求得,和,再利用两角和的正切的公式,进行化简、运算,即可求解.【详解】由,由,可得又由,所以,由,得,可得,所以,即.【点睛】本题主要考查了两角和与差的正切函数的化简、求值问题,其中解答中熟记两角和与差的正切公式,准确运算是解答的关键,着重考查了推理与运算能力,试题有一定的难度,属于中档试题.20、(1)1;(1)此时,此时【解析】

(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上的最值.【详解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根据,可得=﹣,故.(1)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)=的图象.∵x∈[],∴,当时,即时,g(x)取得最大值为;当时,即时,g(x)取得最小值为2.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论