版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省宜春市宜春中学数学高一下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出函数为常数,且,,无论a取何值,函数恒过定点P,则P的坐标是A. B. C. D.2.在中,,,为的外接圆的圆心,则()A. B.C. D.3.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.4.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.5.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40406.矩形ABCD中,,,则实数()A.-16 B.-6 C.4 D.7.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏8.若角的终边过点,则()A. B. C. D.9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱10.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间为_________.12.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.13.数列的通项,前项和为,则____________.14.已知1,,,,4成等比数列,则______.15.若,则____________.16.若,且,则=_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.18.设数列满足.(1)求的通项公式;(2)求数列的前项和.19.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.20.甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?21.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.2、A【解析】
利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.3、B【解析】
由正弦定理可得3sinBsinA=4sin【详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【点睛】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.4、D【解析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.5、A【解析】
根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.6、B【解析】
根据题意即可得出,从而得出,进行数量积的坐标运算即可求出实数.【详解】据题意知,,,.故选:.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于容易题.7、B【解析】
设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.8、D【解析】
解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【点睛】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.9、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.10、B【解析】
由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.12、.【解析】
分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.13、7【解析】
根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.14、2【解析】
因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【点睛】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.15、【解析】故答案为.16、【解析】
由的值及,可得的值,计算可得的值.【详解】解:由,且,由,可得,故,故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】(1):,.用分层抽样比较合适.第1组应抽取的人数为,第2组应抽取的人数为,第3组应抽取的人数为,第4组应抽取的人数为,第5组应抽取的人数为.(2)(1)中25人的样本中的优秀员工中,第4组有3人,记这3人分别为,第5组有3人,记这3人分别为.从这6人中随机选取2名,所有的基本事件为:,,,,,,,,,,,,,,,共有15个基本事件.选取的2名工人在同一组的基本事件有,,,,,共6个,故选取的2名工人在同一组的概率为.【点睛】本小题主要考查补全频率分布,考查分层抽样,考查古典概型的计算,属于基础题.18、(1);(1).【解析】
(1)在中,将代得:,由两式作商得:,问题得解.(1)利用(1)中结果求得,分组求和,再利用等差数列前项和公式及乘公比错位相减法分别求和即可得解.【详解】(1)由n=1得,因为,当n≥1时,,由两式作商得:(n>1且n∈N*),又因为符合上式,所以(n∈N*).(1)设,则bn=n+n·1n,所以Sn=b1+b1+…+bn=(1+1+…+n)+设Tn=1+1·11+3·13+…+(n-1)·1n-1+n·1n,①所以1Tn=11+1·13+…(n-1)·1n-1+(n-1)·1n+n·1n+1,②①-②得:-Tn=1+11+13+…+1n-n·1n+1,所以Tn=(n-1)·1n+1+1.所以,即.【点睛】本题主要考查了赋值法及方程思想,还考查了分组求和法及乘公比错位相减法求和,考查计算能力及转化能力,属于中档题.19、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.考点:1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和,(6)本题考查了等差数列绝对值求和,需讨论零点后分两段求和.20、甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小【解析】
设从甲到A调运吨,从甲到B调运吨,则由题设可得,总的费用为,利用线性规划可求目标函数的最小值.【详解】设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,设调运的总费用为元,则.由已知得约束条件为,可行域如图所示,平移直线可得最优解为.甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.【点睛】本题考查线性规划在实际问题中的应用,属于基础题.21、(1);(2)见解析【解析】
(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国际酒店管理服务合作协议
- 二手住宅装修质量保修合同2024年版3篇
- 2024年多层合板标准购销协议版
- 2024全新鱼塘水库承包合同下载
- 江南大学《电磁场理论》2023-2024学年第一学期期末试卷
- 佳木斯大学《小学数学课程与教学》2021-2022学年第一学期期末试卷
- 佳木斯大学《即兴口语表达》2021-2022学年第一学期期末试卷
- 暨南大学《医学微生物》2021-2022学年第一学期期末试卷
- 济宁学院《新能源企业管理》2021-2022学年第一学期期末试卷
- 文旅新媒体运营 课件 第3章 文旅新媒体平台运营
- 医药行业两票制解析和解决方案
- 文化街项目未来收益现值咨询评估报告
- 《医疗机构制剂许可证》验收标准
- 2023年度军队文职《教育学》真题库(含答案)
- 液压剪板机QC11Y说明书
- 《创新思维》全套课件
- 带量采购课件完整版
- 龙门吊安装与及拆除安全专项施工方案
- 上海八年级第一学期期末考试数学试卷及答案3篇沪教版上学期
- 绘本:《幼儿园的一天》
- 保密法知识培训讲座
评论
0/150
提交评论