版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省池州市东至二中数学高一下期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前n项和为,且满足,则()A.1 B. C. D.20162.若直线与曲线有公共点,则的取值范围是()A. B.C. D.3.若圆与圆外切,则()A.21 B.19 C.9 D.-114.在中,,,则的最小值是()A.2 B.4 C. D.125.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.546.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.7.已知是非零向量,若,且,则与的夹角为()A. B. C. D.8.在区间上随机选取一个数,则满足的概率为()A. B. C. D.9.函数的值域为A.[1,] B.[1,2] C.[,2] D.[10.若一元二次不等式对一切实数都成立,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解为______.12.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________13.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________14.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.15.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.16.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设的内角所对应的边长分别是,且.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.18.已知,,,,求的值.19.在中,,.(1)求角B的大小;(2)的面积,求的边BC的长.20.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.21.数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用和关系得到数列通项公式,代入数据得到答案.【详解】已知数列的前n项和为,且满足,相减:取答案选C【点睛】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.2、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题3、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断4、C【解析】
根据,,得到,,平方计算得到最小值.【详解】故答案为C【点睛】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.5、D【解析】
根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.6、C【解析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C7、D【解析】
由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.8、D【解析】
在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解析】
因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.10、A【解析】
该不等式为一元二次不等式,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,从而可得关于参数的不等式组,解之可得结果.【详解】不等式为一元二次不等式,故,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,则,解不等式组,得.故本题正确答案为A.【点睛】本题考查一元二次不等式恒成立问题,考查一元二次函数的图象与性质,注意数形结合的运用,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.12、②③【解析】
利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.13、1【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-2点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.14、.【解析】
连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15、1【解析】
直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.16、【解析】
根据的定义把带入即可。【详解】∵∴∵∴①∴②①-②得∴故答案为:【点睛】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【详解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即则:故:【点睛】本题主要考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.18、【解析】
根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题考查两角和与差的三角函数公式和同角三角函数关系以及二倍角公式,考察角变换的应用,属于中档题.19、(1);(2)【解析】
(1)由条件可,展开计算代入,即可得;(2)先利用正弦定理求出,再利用面积可得,解方程可得,再利用余弦定理可求得边BC的长.【详解】解:(1)在中,,则,即,整理得,又,,(2)由正弦定理得,又,即,所以,,解得,即.【点睛】本题考查了正弦定理,余弦定理的应用,考查了面积公式,是基础题.20、(1)见证明;(2)【解析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.【详解】(1)证明:取的中点,连接.∵是中点∴又是的中点,∴∴,从而四边形是平行四边形,故又平面,平面,∴(2)∵平面,∴是在平面内的射影为与平面所成角,四边形为矩形,∵,∴,∴过点作交的延长线于,连接,∵平面据三垂线定理知.∴是二面角的平面角易知道为等腰直角三角形,∴∴=∴二面角的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电机学课件-清华大学
- 2024年全新装修设计合作协议2篇
- 广西大学附属中学消防讲座课件张琳敏课件
- 房屋担保租赁合同(2篇)
- 2024年互联网租赁平台自行车退租退款及押金返还协议3篇
- 2025年贵州货运从业资格考试模拟考试题库及答案解析
- 2025年福州货运从业资格试题答案解析
- 2025年武汉货运从业资格证考试模拟考试题及答案
- 2025年克拉玛依b2考货运资格证要多久
- 2025年塔城货运资格证培训考试题
- 人工智能技术咨询行业可行性分析报告
- 2024 年度校长述职报告:坚守教育初心铸就卓越未来
- 妇女健康教育宣传内容课件
- 2024年建筑施工起重机械设备安全管理制度(3篇)
- 2024年采购工作规划
- 机电传动控制自动运输线-课程设计
- 知行合一 - 社会实践•创新创业(江西师范大学)知到智慧树章节答案
- 城市排水系统维护员合同范例
- 人教版英语八年级上册《Unit 10 If you go to the party,you'll have a great time!》大单元整体教学设计2022课标
- Unit5《Lovely faces》(说课稿)-2024-2025学年沪教版(五四制)(2024)英语一年级上册
- 2024年度文化旅游产业投资与运营合同6篇
评论
0/150
提交评论