宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题含解析_第1页
宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题含解析_第2页
宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题含解析_第3页
宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题含解析_第4页
宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川市金凤区六盘山高中2024年数学高一下期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件2.如图,已知平行四边形,,则()A. B.C. D.3.定义运算,设,若,,,则的值域为()A. B. C. D.4.某校有高一学生450人,高二学生480人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为n的样本,已知从高一学生中抽取15人,则n为()A.15 B.16 C.30 D.315.在四边形ABCD中,若,则四边形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四边形6.已知集合,,则()A. B. C. D.7.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.8.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.9.过点且与圆相切的直线方程为()A. B.或C.或 D.或10.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等比数列的前项和为,若,,则的值为______.12.已知数列满足,,则_______;_______.13.如图,长方体中,,,,与相交于点,则点的坐标为______________.14.已知数列的前n项和,则________.15.在平面直角坐标系中,点到直线的距离为______.16.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().18.如图,三条直线型公路,,在点处交汇,其中与、与的夹角都为,在公路上取一点,且km,过铺设一直线型的管道,其中点在上,点在上(,足够长),设km,km.(1)求出,的关系式;(2)试确定,的位置,使得公路段与段的长度之和最小.19.在区间内随机取两个数,则关于的一元二次方程有实数根的概率为__________.20.已知向量,.求:(1);(2)与的夹角的余弦值;(3)求的值使与为平行向量.21.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.2、A【解析】

根据平面向量的加法运算,即可得到本题答案.【详解】由题,得.故选:A【点睛】本题主要考查平面向量的加法运算,属基础题.3、C【解析】

由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.4、D【解析】

根据分层抽样的定义和性质进行求解即可.【详解】根据分层抽样原理,列方程如下,n450+480解得n=1.故选:D.【点睛】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.5、D【解析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.6、D【解析】依题意,故.7、A【解析】

求出函数的周期,函数的奇偶性,判断求解即可.【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.8、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.9、C【解析】

分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.10、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】

利用及可计算,从而可计算的值.【详解】因为,故,因为,故,故,故填16.【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.12、【解析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.13、【解析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.14、【解析】

先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.15、2【解析】

利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。16、【解析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),,(Ⅱ)见解析【解析】

(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【点睛】本题主要考查了利用和的关系以及构造法求数列的通项公式,同时考查利用放缩法证明数列不等式,解题难点是如何放缩,意在考查学生的数学建模能力和数学运算能力。18、(1)(2)当时,公路段与段的总长度最小【解析】

(1)(法一)观察图形可得,由此根据三角形的面积公式,建立方程,化简即可得到的关系式;(法二)以点为坐标原点,所在的直线为轴建立平面直角坐标系,找到各点坐标,根据三点共线,即可得到结论;(2)运用“乘1法”,利用基本不等式,即可求得最值,得到答案.【详解】(1)(法一)由图形可知.,,所以,即.(法二)以为坐标原点,所在的直线为轴建立平面直角坐标系,则,,,,由,,三点共线得.(2)由(1)可知,则(),当且仅当(km)时取等号.答:当时,公路段与段的总长度最小为8..【点睛】本题主要考查了三角形的面积公式应用,以及利用基本不等式求最值,着重考查了推理运算能力,属于基础题.19、【解析】试题分析:解:在平面直角坐标系中,以轴和轴分别表示的值,因为m、n是中任意取的两个数,所以点与右图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件表示方程有实根,则事件,所对应的区域为图中的阴影部分,且阴影部分的面积为.故由几何概型公式得,即关于的一元二次方程有实根的概率为.考点:本题主要考查几何概型概率的计算.点评:几何概型概率的计算,关键是明确基本事件空间及发生事件的几何度量,有面积、体积、角度数、线段长度等.本题涉及到了线性规划问题中平面区域.20、(1)5(2)(3)【解析】

(1)利用向量坐标运算法则,先求出向量的坐标,再求模;(2)利用两个向量的数量积的定义和公式,则可求出与的夹角的余弦值;(3)利用两个向量共线的性质,求出的值.【详解】(1)向量,,,;(2)设与的夹角为,∵,,,所以,即与的夹角的余弦值为;(3)由题可得:,∵与为平行向量,∴,解得,即满足使与为平行向量.【点睛】本题主要考查向量的坐标运算,涉及向量的模,数量积,共线等相关知识,属于基础题.21、(1)见解析(2)【解析】

(1)先证明平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论