高中数学人教A版选修23课时跟踪检测(十)概率的基本性质_第1页
高中数学人教A版选修23课时跟踪检测(十)概率的基本性质_第2页
高中数学人教A版选修23课时跟踪检测(十)概率的基本性质_第3页
高中数学人教A版选修23课时跟踪检测(十)概率的基本性质_第4页
高中数学人教A版选修23课时跟踪检测(十)概率的基本性质_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时跟踪检测(十)概率的基本性质层级一学业水平达标1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是()A.A与C互斥 B.B与C互斥C.任何两个都互斥 D.任何两个都不互斥解析:选D由题意知事件A、B、C两两不可能同时发生,因此两两互斥.2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品解析:选B至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.3.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是()A.全是白球与全是红球是对立事件B.没有白球与至少有一个白球是对立事件C.只有一个白球与只有一个红球是互斥关系D.全是红球与有一个红球是包含关系解析:选B从盒中任取2球,出现球的颜色情况是,全是红球,有一个红球且有一个白球,全是白球,至少有一个的对立面是没有一个,所以选B.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球解析:选D对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是()A.0.665 B.0.56C.0.24 D.0.285解析:选A∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665,故选A.6.掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.解析:A,B既是互斥事件,也是对立事件.答案:A,BA,B7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.解析:摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率是1-0.42-0.28=0.3.答案:0.38.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=eq\f(1,2),P(B)=eq\f(1,6),则出现奇数点或2点的概率为________.解析:因为事件A与事件B是互斥事件,所以P(A∪B)=P(A)+P(B)=eq\f(1,2)+eq\f(1,6)=eq\f(2,3).答案:eq\f(2,3)9.甲、乙两人下棋,和棋的概率为eq\f(1,2),乙获胜的概率为eq\f(1,3),求:(1)甲获胜的概率;(2)甲不输的概率.解:(1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率P=1-eq\f(1,2)-eq\f(1,3)=eq\f(1,6).即甲获胜的概率是eq\f(1,6).(2)法一:设事件A为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(A)=eq\f(1,6)+eq\f(1,2)=eq\f(2,3).法二:设事件A为“甲不输”,可看成是“乙获胜”的对立事件,所以P(A)=1-eq\f(1,3)=eq\f(2,3).即甲不输的概率是eq\f(2,3).10.在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:(1)小明在数学考试中取得80分以上成绩的概率;(2)小明考试及格的概率.解:记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件A,B,C,D,这四个事件彼此互斥.(1)小明成绩在80分以上的概率是P(A∪B)=P(A)+P(B)=0.18+0.51=0.69.(2)法一:小明及格的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.法二:小明不及格的概率为0.07,则小明及格的概率为1-0.07=0.93.层级二应试能力达标1.如果事件A,B互斥,记eq\x\to(A),eq\x\to(B)分别为事件A,B的对立事件,那么()A.A∪B是必然事件 B.eq\x\to(A)∪eq\x\to(B)是必然事件C.eq\x\to(A)与eq\x\to(B)一定互斥 D.eq\x\to(A)与eq\x\to(B)一定不互斥解析:选B用Venn图解决此类问题较为直观.如图所示,

是必然事件,故选B.2.根据湖北某医疗所的调查,某地区居民血型的分布为:O型52%,A型15%,AB型5%,B型28%.现有一血型为A型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为()A.67% B.85%C.48% D.15%解析:选AO型血与A型血的人能为A型血的人输血,故所求的概率为52%+15%=67%.故选A.3.下列各组事件中,不是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%解析:选B对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件.4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是()A.对立事件 B.不可能事件C.互斥但不对立事件 D.以上答案都不对解析:选C“甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立.5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.解析:设A={摸出红球},B={摸出白球},C={摸出黑球},则A,B,C两两互斥,A与eq\x\to(A)为对立事件,因为P(A+B)=P(A)+P(B)=0.58,P(A+C)=P(A)+P(C)=0.62,P(A+B+C)=P(A)+P(B)+P(C)=1,所以P(C)=0.42,P(B)=0.38,P(A)=0.20,所以P(eq\x\to(A))=1-P(A)=1-0.20=0.80.答案:0.806.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为eq\f(3,7),乙夺得冠军的概率为eq\f(1,4),那么中国队夺得女子乒乓球单打冠军的概率为________.解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为eq\f(3,7)+eq\f(1,4)=eq\f(19,28).答案:eq\f(19,28)7.在大小相同的5个球中,只有红色和白色两种球,若从中任取2个,全是白球的概率为0.3,求所取出的2个球中至少有1个红球的概率.解:记事件A表示“取出的2个球中至少有1个红球”,事件B表示“取出的2个球全是白球”,则事件A与事件B互为对立事件,而事件B发生的概率为P(B)=0.3,所以事件A发生的概率为P(A)=1-P(B)=1-0.3=0.7.8.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解:(1)∵每1000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴P(A)=eq\f(1,1000),P(B)=eq\f(10,1000)=eq\f(1,100),P(C)=eq\f(50,1000)=eq\f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论