




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市民办新竹园中学2023-2024学年中考四模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③ B.②③ C.③④ D.②④2.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=kx(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y23.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()A.π B.π C.6﹣π D.2﹣π4.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10105.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是() A、2个 B、3个 C、4个 D、5个6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>17.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-48.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.9.下列计算正确的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2•3x2=6x410.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米11.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形ABCD的边长为15,sin∠BAC=3514.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.15.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.16.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.18.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)20.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.21.(6分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)22.(8分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.23.(8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.24.(10分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?25.(10分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离;(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?26.(12分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.例如:求点到直线的距离.
解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.27.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
①错误.由题意a>1.b>1,c<1,abc<1;
②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
③错误.抛物线与x轴的另一个交点是(1,1);
④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a>1,
∵抛物线交y轴于负半轴,∴c<1,
∵对称轴在y轴左边,∴-<1,
∴b>1,
∴abc<1,故①错误.
∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
当ax2+bx+c<mx+n时,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
抛物线与x轴的另一个交点是(1,1),故③错误,
∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
故选:D.【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.2、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.3、C【解析】
根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.【详解】由题意可得,BC=CD=4,∠DCB=90°,连接OE,则OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴阴影部分面积为:==6-π,故选C.【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
②根据图示知,该函数图象的开口向上,
∴a>0;
故②正确;
③又对称轴x=-=1,
∴<0,
∴b<0;
故本选项错误;
④该函数图象交于y轴的负半轴,
∴c<0;
故本选项错误;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
所以①②⑤三项正确.
故选B.6、B【解析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.7、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.8、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.9、D【解析】
先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.【详解】A、2x2+3x2=5x2,不符合题意;B、2x2﹣3x2=﹣x2,不符合题意;C、2x2÷3x2=,不符合题意;D、2x23x2=6x4,符合题意,故选:D.【点睛】本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.10、D【解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.11、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.12、C【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为sin∠BAC=35,AB=10,所以1考点:三角函数、菱形的性质及勾股定理;14、m≤1.【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.【详解】∴关于x的一元二次方程x1+1x+m−1=0有解,∴△=11−4(m−1)=8−4m≥0,解得:m≤1.故答案为:m≤1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.15、-2【解析】试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.考点:一次函数图象与系数的关系.16、2【解析】
根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.17、x2+7x-4【解析】
设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A,则根据题目信息可得他所捂的多项式为故答案为【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;18、【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、小时【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题20、(2)证明见解析;(2)k2=2,k2=2.【解析】
(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.21、小亮说的对,CE为2.6m.【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.22、(1)DE与⊙O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=823、(1)作图见解析(2)∠BDC=72°【解析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.24、(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】
(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.25、(Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】(Ⅰ)在中,,≈0.74,∴.答:发射台与雷达站之间的距离约为.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.26、(1)点P在直线上,说明见解析;(2).【解析】
解:(1)求:(1)直线可变为,说明点P在直线上;(2)在直线上取一点(0,1),直线可变为则,∴这两条平行线的距离为.27、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).【解析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学综合实践活动长春版三年级下册第5课 设计汽车标志教案
- 《精准数据》课件
- 2025小学教师继续教育学习心得体会(5篇)
- 学习实践弟子规经典文化心得体会(3篇)
- 小学美术人教版三年级上册第8课 星空的联想教案及反思
- 南京市企业劳动合同(非全日制)(4篇)
- 房屋租赁合同表范例(16篇)
- 2025年军训自我鉴定(20篇)
- 《人格发展中的自我认知问题》课件
- 《故乡的风景》课件
- 食品销售提成管理制度
- 2025-2030中国水利建设行业经营形势分析及未来前景展望研究报告
- 自制结婚协议书范本
- 统编版二年级语文下册第四单元自测卷(含答案)
- 湘豫名校联考2024-2025学年高三春季学期第二次模拟考试化学答案
- 2025年医院员工满意度提升计划
- 学会自我保护课件
- 政府会计实务(第六版)课件 3.政府会计核算模式
- 借助deepseek提升科技研发效率与质量
- 精神科护理不良事件分析讨论
- 2025年全职高手测试题及答案
评论
0/150
提交评论