版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题求最值中的几何模型题型解读|模型构建|通关试练模型01将军饮马模型将军饮马模型在考试中主要考查转化与化归等的数学思想,该题型综合考查学生的理解和数形结合能力具有一定的难度,也是学生感觉有难度的题型.在解决几何最值问题主要依据是:①将军饮马作对称点;②两点之间,线段最短;=3\*GB3③垂线段最短,涉及的基本知识点还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等;希望通过本专题的讲解让大家对这类问题有比较清晰的认识.模型02建桥选址模型建桥选址模型,即沿一个方向平移的定长线段两端到两个定点距离和最小,解题时需要理清楚是否含有定长平移线段,且利用平移求出最短路径位置.求解长度时若有特殊角,通常采用构造直角三角形利用勾股定理求解的方法.该题型主要考查了在最短路径问题中的应用,涉及到的主要知识点有矩形的性质、平行四边形的性质、等腰直角三角形的性质、勾股定理,解题的关键在于如何利用轴对称找到最短路径.模型03胡不归模型胡不归PA+k·PB”型的最值问题:当k等于1时,即为“PA+PB”之和最短问题,可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k不等于1时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路.此类问题的处理通常以动点P所在图象的不同来分类,一般分为两类研究.即点P在直线上运动和点P在圆上运动.其中点P在直线上运动的类型通常为“胡不归”问题.模型01将军饮马模型考|向|预|测将军饮马模型问题该题型主要以选择、填空形式出现,综合性大题中的其中一问,难度系数较大,在各类考试中都以中高档题为主.本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.答|题|技|巧第一步:观察所求为横向还是纵向的线段长度(定长),将线段按照长度方向平移第二步:同侧做对称点变异侧,异侧直接连线第三步:结合两点之间,线段最短;垂线段最短;三角形两边之和大于第三边等常考知识点第四步:利用数学的转化思想,将复杂模型变成基本模型(1)点A、B在直线m两侧两点连线,线段最短例1.(2023·四川)如图,等边三角形的边上的高为6,是边上的中线,M是线段上的-一个动点,E是中点,则的最小值为.(2)点A、B在直线同侧例2.(2022·安徽)如图,在锐角△ABC中,AB=6,∠ABC=60°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为(
)A.6 B.6 C.3 D.3模型02建桥选址模型考|向|预|测建桥选址模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题(1)两个点都在直线外侧:辅助线:连接AB交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB.例1.(2022·湖北)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.求PD+PQ+QE的最小值为.(2)一个点在内侧,一个点在外侧:辅助线:过点B作关于定直线n的对称点B’,连接AB’交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB’.例2.(2023·山东)如图,在中,,,,直线是中边的垂直平分线,是直线上的一动点,则的周长的最小值为_________.(3)如图3,两个点都在内侧:辅助线:过点A、B作关于定直线m、n的对称点A’、B’,连接A’B’交直线m、n于点P、Q,则PA+PQ+QA的最小值为A’B’.模型03胡不归模型考|向|预|测胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握.在解决胡不归问题主要依据是:点到线的距离垂线段最短.答|题|技|巧第一步:构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型;第二步:借助三角函数,构造锐角α,将另一个系数也化为1;第三步:利用“垂线段最短”原理构造最短距离;第四步:数形结合解题例1.(2023·江苏)如图,中,,,,P为边上一动点,则的最小值等于.1.(2023·江苏扬州)如图所示,军官从军营C出发先到河边(河流用表示)饮马,再去同侧的D地开会,应该怎样走才能使路程最短?你能解决这个著名的“将军饮马”问题吗?下列给出了四个图形,你认为符合要求的图形是(
)A.B. C. D.2.(2023.浙江)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF=.3.(2022·安徽)如图,在平面直角坐标系中,∠AOB=30°,P(5,0),在OB上找一点M,在OA上找一点N,使△PMN周长最小,则此时△PMN的周长为.4.(2023·广东)如图,在中,,,,,是的平分线,若点、分别是和上的动点,则的最小值是______.5.(2023·江苏)如图,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线的距离分别为,,.要在高速公路上C,D之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为.
6.(2023·浙江)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=(
)A. B. C.6 D.7.(2023·浙江)如图,平行四边形中,,,,P为边CD上的一动点,则的最小值等于(
)
A. B. C. D.8.(2023·四川)如图,在中,,若D是边上的动点,则的最小值是(
)A.6 B.8 C.10 D.129.(2023·湖南)某班级在探究“将军饮马问题”时抽象出数学模型:直线同旁有两个定点A、B,在直线上存在点,使得的值最小.解法:如图1,作A点关于直线的对称点,连接,则与直线的交点即为,且的最小值为.请利用上述模型解决下列问题:(1)几何应用:如图2,中,,,是的中点,是边上的一动点,则的最小值为;(2)几何拓展:如图3,中,,,若在、上各取一点、使的值最小,画出图形,求最小值并简要说明理由.10.(2023·陕西)在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离.问题提出:(1)如图1所示,已知A,B是直线l同旁的两个定点.在直线l上确定一点P,并连接与,使的值最小.
问题探究:(2)如图2所示,正方形的边长为2,E为的中点,P是上一动点.连接和,则的最小值是___________;
问题解决:(3)某地有一如图3所示的三角形空地,已知,P是内一点,连接后测得米,现当地政府欲在三角形空地中修一个三角形花坛,点分别是边上的任意一点(不与各边顶点重合),求周长的最小值.
1.(2023·山东)如图,已知点,,,,为直线上一动点,则的对角线的最小值是(
)A. B.4 C.5 D.2.(2023·上虞市)如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则∠AOB的度数是()A.15 B.30 C.45 D.603.(2023·山东)如图,矩形的边,E为上一点,且,F为边上的一个动点,连接,若以为边向右侧作等腰直角三角形,连接,则的最小值为(
)A. B. C.3 D.4.(2023·四川)如图,点M是菱形ABCD的边BC的中点,P为对角线BD上的动点,若AB=2,∠A=120°,则PM+PC的最小值为(
)A.2 B. C. D.15.(2023·湖北)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为.6.(2023·北京)如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为.
7.(2023·广东)如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为_____.8.(2023·广东)如图,在中,,,.,分别是边,上的动点,且,则的最小值为.9.(2023·内蒙古)如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是________.10.(2023·浙江)如图,河的两岸有,两个水文观测点,为方便联络,要在河上修一座木桥(河的两岸互相平行,垂直于河岸),现测得,两点到河岸的距离分别是5米,4米,河宽3米,且,两点之间的水平距离为12米,则的最小值是米.
11.(2023·广东)如图所示,已知O为坐标原点,矩形(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为,连接,将沿直线翻折至,交于点E.
(1)求点坐标.(2)试在x轴上找点P,使的长度最短,请求出这个最短距离.12.(2023·吉林)数学兴趣活动课上,小致将等腰的底边与直线重合.(1)如图(1),在中,,点在边所在的直线上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小致发现的最小值是____________.(2)为进一步运用该结论,在(1)的条件下,小致发现,当最短时,如图(2),在中,作平分交于点点分别是边上的动点,连结小致尝试探索的最小值,小致在上截取使得连结易证,从而将转化为转化到(1)的情况,则的最小值为;(3)解决问题:如图(3),在中,,点是边上的动点,连结将线段绕点顺时针旋转,得到线段连结,求线段的最小值.13.(2023·河南)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?作法如下:如图1,从出发向河岸引垂线,垂足为,在的延长线上,取关于河岸的对称点,连接,与河岸线相交于,则点就是饮马的地方,将军只要从A出发,沿直线走到,饮马之后,再由沿直线走到,所走的路程就是最短的.
(1)观察发现如图2,在等腰梯形中,,点、是底边与的中点,连接,在线段上找一点,使最短.作点关于的对称点,恰好与点重合,连接交于一点,则这点就是所求的点,故的最小值为_______.(2)实践运用如图3,已知的直径,点A在圆上,且的度数为,点是弧的中点,点在直径上运动,求的最小值.(3)拓展迁移如图,已知抛物线的对称轴为,且抛物线经过两点,与轴交于另一点.①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线上找到一点,使周长最小,请求出此时点的坐标与周长最小值.专题求最值中的几何模型解析题型解读|模型构建|通关试练模型01将军饮马模型将军饮马模型在考试中主要考查转化与化归等的数学思想,该题型综合考查学生的理解和数形结合能力具有一定的难度,也是学生感觉有难度的题型.在解决几何最值问题主要依据是:①将军饮马作对称点;②两点之间,线段最短;=3\*GB3③垂线段最短,涉及的基本知识点还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等;希望通过本专题的讲解让大家对这类问题有比较清晰的认识.模型02建桥选址模型建桥选址模型,即沿一个方向平移的定长线段两端到两个定点距离和最小,解题时需要理清楚是否含有定长平移线段,且利用平移求出最短路径位置.求解长度时若有特殊角,通常采用构造直角三角形利用勾股定理求解的方法.该题型主要考查了在最短路径问题中的应用,涉及到的主要知识点有矩形的性质、平行四边形的性质、等腰直角三角形的性质、勾股定理,解题的关键在于如何利用轴对称找到最短路径.模型03胡不归模型胡不归PA+k·PB”型的最值问题:当k等于1时,即为“PA+PB”之和最短问题,可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k不等于1时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路.此类问题的处理通常以动点P所在图象的不同来分类,一般分为两类研究.即点P在直线上运动和点P在圆上运动.其中点P在直线上运动的类型通常为“胡不归”问题.模型01将军饮马模型考|向|预|测将军饮马模型问题该题型主要以选择、填空形式出现,综合性大题中的其中一问,难度系数较大,在各类考试中都以中高档题为主.本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.答|题|技|巧第一步:观察所求为横向还是纵向的线段长度(定长),将线段按照长度方向平移第二步:同侧做对称点变异侧,异侧直接连线第三步:结合两点之间,线段最短;垂线段最短;三角形两边之和大于第三边等常考知识点第四步:利用数学的转化思想,将复杂模型变成基本模型(1)点A、B在直线m两侧两点连线,线段最短例1.(2023·四川)如图,等边三角形的边上的高为6,是边上的中线,M是线段上的-一个动点,E是中点,则的最小值为.【答案】6【详解】解:连接BE,与AD交于点M.∵AB=AC,AD是BC边上的中线,∴B、C关于AD对称,则EM+CM=EM+BM,则BE就是EM+CM的最小值.∵E是等边△ABC的边AC的中点,AD是中线∴BE=AD=6,∴EM+CM的最小值为6,故答案为:6.(2)点A、B在直线同侧例2.(2022·安徽)如图,在锐角△ABC中,AB=6,∠ABC=60°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为(
)A.6 B.6 C.3 D.3【答案】D【详解】解:如图,在BC上取E,使BE=BQ,连接PE,过A作AH⊥BC于H,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∵BP=BP,BE=BQ,∴△BPQ≌△BPE(SAS),∴PE=PQ,∴AP+PQ的最小即是AP+PE最小,当AP+PE=AH时最小,在Rt△ABH中,AB=6,∠ABC=60°,∴AH=,∴AP+PQ的最小为,故选:D.模型02建桥选址模型考|向|预|测建桥选址模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题(1)两个点都在直线外侧:辅助线:连接AB交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB.例1.(2022·湖北)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.求PD+PQ+QE的最小值为.【答案】4.【详解】如图,连接,和都是等边三角形,,,,垂直平分,,同理可得:垂直平分,,,由两点之间线段最短可知,当点共线时,取得最小值,故的最小值为4.(2)一个点在内侧,一个点在外侧:辅助线:过点B作关于定直线n的对称点B’,连接AB’交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB’.例2.(2023·山东)如图,在中,,,,直线是中边的垂直平分线,是直线上的一动点,则的周长的最小值为_________.【答案】【详解】解:∵直线m垂直平分BC,∴B、C关于直线m对称,设直线m交AB于D,∴当P和D重合时,AP+CP的值最小,最小值等于AB的长,∴△APC周长的最小值是6+4=10.故答案为:10.(3)如图3,两个点都在内侧:辅助线:过点A、B作关于定直线m、n的对称点A’、B’,连接A’B’交直线m、n于点P、Q,则PA+PQ+QA的最小值为A’B’.例3.(2023.浙江)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.【答案】4【详解】解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.模型03胡不归模型考|向|预|测胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握.在解决胡不归问题主要依据是:点到线的距离垂线段最短.答|题|技|巧第一步:构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型;第二步:借助三角函数,构造锐角α,将另一个系数也化为1;第三步:利用“垂线段最短”原理构造最短距离;第四步:数形结合解题例1.(2023·江苏)如图,中,,,,P为边上一动点,则的最小值等于.【答案】【详解】解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵,∴∠EDP=∠DAB=45°,∴,∴,∴,∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵,∴,故答案为:.1.(2023·江苏扬州)如图所示,军官从军营C出发先到河边(河流用表示)饮马,再去同侧的D地开会,应该怎样走才能使路程最短?你能解决这个著名的“将军饮马”问题吗?下列给出了四个图形,你认为符合要求的图形是(
)A.B. C. D.【答案】D【详解】解:由选项D中图可知:作点关于直线的对称点,连接交于点,由对称性可知,,,当、、三点共线时,的距离最短,故选:D2.(2023.浙江)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF=.【答案】∠ECF=30º【详解】过E作EM∥BC,交AD于N,如图所示:∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60º,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30º.故答案为30°3.(2022·安徽)如图,在平面直角坐标系中,∠AOB=30°,P(5,0),在OB上找一点M,在OA上找一点N,使△PMN周长最小,则此时△PMN的周长为.【答案】5【详解】作点P关于OB的对称点C,作P点关于AO的对称点D,连接CD交OA于N,交OB于M,连接MP,NP,OC,OD,∴CM=MP,NP=DN,∴PM+PN+MN=CM+MN+DN≥CD,∴当C、M、N、D点共线时,△PMN的周长最小,∵∠BOA=30°,OP=OC=OB,∴∠COD=60°,∴△OCD是等边三角形,∴CD=OP,∵P(5,0),∴OP=5,∴CD=5,∴△PMN的周长最小值为5,故答案为:5.4.(2023·广东)如图,在中,,,,,是的平分线,若点、分别是和上的动点,则的最小值是.【答案】【详解】解:如图,作Q关于AP的对称点O,则PQ=PO,所以O、P、C三点共线时,CO=PC+PO=PC+PQ,此时PC+PQ有可能取得最小值,∵当CO垂直于AB即CO移到CM位置时,CO的长度最小,∴PC+PQ的最小值即为CM的长度,∵,∴CM=,即PC+PQ的最小值为,故答案为.5.(2023·江苏)如图,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线的距离分别为,,.要在高速公路上C,D之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为.
【答案】【详解】解:如图所示:作A点关于直线的对称点,再连接,交直线于点P,
则此时最小,过点B作交延长线于点E,∵,,.∴,,∴,,在中,,则的最小值为.故答案为:.6.(2023·浙江)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=(
)A. B. C.6 D.【答案】B【详解】解:如图:等腰Rt△DEF中,DE=DF=,过点D作DM⊥EF于点M,过E、F分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=,解得:PE=PF==,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣=.故选B.7.(2023·浙江)如图,平行四边形中,,,,P为边CD上的一动点,则的最小值等于(
)
A. B. C. D.【答案】A【详解】解:延长,过点B作交于点P,∵四边形为平行四边形,∴,∴,∵,∴,则,则,同理可得:,∴,∴当点E、P、B在同一条直线上时,的值最小,∵,∴.故选:A.
8.(2023·四川)如图,在中,,若D是边上的动点,则的最小值是(
)A.6 B.8 C.10 D.12【答案】D【详解】解:过点C作射线,使,再过动点D作,垂足为点F,连接,如图所示:在中,,∴,∵=,∴当A,D,F在同一直线上,即时,的值最小,最小值等于垂线段的长,此时,,∴是等边三角形,∴,在中,,∴,∴,∴,∴,∴,∴的最小值为12,故选:D.9.(2023·湖南)某班级在探究“将军饮马问题”时抽象出数学模型:直线同旁有两个定点A、B,在直线上存在点,使得的值最小.解法:如图1,作A点关于直线的对称点,连接,则与直线的交点即为,且的最小值为.请利用上述模型解决下列问题:(1)几何应用:如图2,中,,,是的中点,是边上的一动点,则的最小值为;(2)几何拓展:如图3,中,,,若在、上各取一点、使的值最小,画出图形,求最小值并简要说明理由.【答案】(1)(2),图和理由见解析【详解】(1)解:如图2所示,作点A关于的对称点,连接交于P,此时的值最小.连接,由勾股定理得,,∵是的中点,∴,∵,,∴,∴,∴的最小值.故答案为:;(2)解:如图3,作点C关于直线的对称点,作于N,交于M,连接,则,,∴为等边三角形,∴,∴,∴的最小值为.10.(2023·陕西)在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离.问题提出:(1)如图1所示,已知A,B是直线l同旁的两个定点.在直线l上确定一点P,并连接与,使的值最小.
问题探究:(2)如图2所示,正方形的边长为2,E为的中点,P是上一动点.连接和,则的最小值是___________;
问题解决:(3)某地有一如图3所示的三角形空地,已知,P是内一点,连接后测得米,现当地政府欲在三角形空地中修一个三角形花坛,点分别是边上的任意一点(不与各边顶点重合),求周长的最小值.
【答案】(1)见解析(2)(3)【详解】(1)解:如图所示,当P点在如图所示的位置时,的值最小;
(2)解:如下图所示,
∵四边形是正方形,∴垂直平分,∴,由题意易得:,当D、P、E共线时,在中,根据勾股定理得,.(3)解:如下图所示,分别作点P关于,的对称点,连接,交,于点,连接,此时周长的最小值等于.
由轴对称性质可得,,∴,在中,即周长的最小值等于.1.(2023·山东)如图,已知点,,,,为直线上一动点,则的对角线的最小值是(
)A. B.4 C.5 D.【答案】A【详解】解:连接,设交于点,如图所示,∵四边形是平行四边形,∴,,∵,∴,∴当取得最小值时,取得最小值,∴当时,取得最小值,∵,,∴,,∴是等腰直角三角形,∴此时是直角三角形,且是斜边,∵,∴,∴的对角线的最小值是,故选:A.2.(2023·上虞市)如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则∠AOB的度数是()A.15 B.30 C.45 D.60【答案】B【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B.3.(2023·山东)如图,矩形的边,E为上一点,且,F为边上的一个动点,连接,若以为边向右侧作等腰直角三角形,连接,则的最小值为(
)A. B. C.3 D.【答案】B【详解】解:如图,过点G作GH⊥AB于H,过点G作MN∥AB,∵四边形ABCD是矩形,AB=,BC=3,∴∠B=90°,CD=,AD=3,∵AE=1,∴BE=,∵∠GHE=∠A=∠GEF=90°,∴∠GEH+∠EGH=90°,∠GEH+∠FEA=90°,∴∠EGH=∠FEA,又∵GE=EF,∴△GEH≌△EFA(AAS),∴GH=AE=1,∴点G在平行AB且到AB距离为1的直线MN上运动,∴当F与D重合时,CG有最小值,此时AF=EH=3,∴CG的最小值=,故选B.4.(2023·四川)如图,点M是菱形ABCD的边BC的中点,P为对角线BD上的动点,若AB=2,∠A=120°,则PM+PC的最小值为(
)A.2 B. C. D.1【答案】B【详解】解:连接AM、AC,AM交BD于P,此时PM+PC最小,连接CP,∵四边形ABCD是菱形,∴OA=OC,AC⊥BD,∴C和A关于BD对称,∴AP=PC,∵∠A=120°,∴∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,∵M是BC的中点,∴AM⊥BC,∴∠BAM=30°,∴BM=1,∴AM=,∴PM+PC=AM=.故选B.5.(2023·湖北)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为.【答案】18【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM=PC,∴满足PC+PB最小即可,显然,当P、B、C三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BC,∴△PMB周长最小值即为BC+BM,此时,作DS⊥AB于S点,DT⊥AC延长线于T点,AQ⊥BC延长线于Q点,由题意,AD为∠BAC的角平分线,∴DS=DT,∵,,∴,即:,∴,解得:AB=14,∵AM=AC=6,∴BM=14-6=8,∴△PMB周长最小值为BC+BM=3+7+8=18,故答案为:18.6.(2023·北京)如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为.
【答案】3【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.7.(2023·广东)如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为_____.【答案】3【详解】解:如图,过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,∵四边形ABCD是菱形,且∠B=120°,∴∠DAC=∠CAB=30°,∴PE=AP;∵∠DAF=60°,∴∠ADF=30°,∴AF=AD=×6=3;∴DF=3;∵AP+PD=PE+PD,∴当点D,P,E三点共线且DE⊥AB时,PE+DP的值最小,最小值为DF的长,∴AP+PD的最小值为3.故答案为:3.8.(2023·广东)如图,在中,,,.,分别是边,上的动点,且,则的最小值为.【答案】【详解】如图,作,连接,过B点作的延长线与G点,,且,,,.,∴当B、E、F三点共线时,,此时的值最小,为.,.又,,∴四边形是矩形,,,,.故答案为:9.(2023·内蒙古)如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是________.【答案】【详解】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∠MAE=30°,∴∠DAB=60°,AD=AB=DC=BC,MD=MB,∴△ADB是等边三角形,∵∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为8,∴DE=,∴2DE=8.∴MA+MB+MD的最小值是8.故答案为:8.10.(2023·浙江)如图,河的两岸有,两个水文观测点,为方便联络,要在河上修一座木桥(河的两岸互相平行,垂直于河岸),现测得,两点到河岸的距离分别是5米,4米,河宽3米,且,两点之间的水平距离为12米,则的最小值是米.
【答案】18【详解】作垂直于河岸,使等于河宽,连接,与靠近A的河岸相交于M,作垂直于另一条河岸,过点A作交的延长线于点C,则且,于是为平行四边形,故,
当时,最小,也就是最短,∵(米),(米),(米)∴在中,(米),∴的最小值为:(米)故答案为:18.11.(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年婚前财产界定合同
- 2024年办公室续租合同协议
- 2024年出租车服务升级:全年大包合同
- 2024年品牌形象广告制作与发布合同
- 2024年专用商场店铺租赁合同
- 2024兼职教师工作录用协议
- 2024年办公室隔断装修工程合同
- 2024年变电站设计与施工一体化合同
- 2024年专业教育咨询个性化服务协议
- 2024年专业家政服务协议:双方权责明确
- GB/T 10476-2024尿素高压冷凝器技术条件
- 人教版小学数学四年级上册教材分析
- 国家执业医师资格考试题库(针灸学)
- 五年级上册小数四则混合运算练习100道及答案
- 心衰健康宣教课件
- 2024年广东省公需课《百县千镇万村高质量发展工程与城乡区域协调发展》考试答案
- 钻孔灌注桩桩工程隐蔽验收记录表格及填写范本
- 起重机吊装方案.doc
- 幂的乘方优质课教学设计完美版
- 安全隐患排查记录(日周月
- ##玩具有限公司作业指导书
评论
0/150
提交评论