江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷含解析_第1页
江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷含解析_第2页
江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷含解析_第3页
江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷含解析_第4页
江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港市灌云县重点名校2023-2024学年中考猜题数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A.152元 B.156元 C.160元 D.190元2.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的A. B. C. D.3.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+94.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有()A.0个 B.1个 C.2个 D.3个5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于()A. B. C. D.6.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是()A. B. C. D.7.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃8.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<yA.①② B.②③ C.②④ D.①③④9.下列实数中是无理数的是()A. B.2﹣2 C.5. D.sin45°10.下列运算正确的是()A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6二、填空题(共7小题,每小题3分,满分21分)11.因式分解:3x2-6xy+3y2=______.12.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.13.如果,那么代数式的值是______.14.对于一元二次方程,根的判别式中的表示的数是__________.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.若一元二次方程有两个不相等的实数根,则k的取值范围是.17.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.19.(5分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.20.(8分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.21.(10分)(1)问题发现如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.(1)①求的值;②求∠ACD的度数.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,AB=4,BC=12,P是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.22.(10分)先化简,再求值:1+xx2-123.(12分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距千米,慢车速度为千米/小时.(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.(4)直接写出两车相距300千米时的x值.24.(14分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【详解】设进价为x元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题.解题关键点:找出相等关系.2、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.3、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4、B【解析】

仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,

∴k<0正确;

②∵y2=x+a,与y轴的交点在负半轴上,

∴a<0,故②错误;

③当x<3时,y1>y2错误;

故正确的判断是①.

故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b(k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5、B【解析】

过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6、A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱.故选A.考点:由三视图判断几何体.7、A【解析】

用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10℃.即这天的最高气温比最低气温高10℃.故选A.8、C【解析】试题分析:根据题意可得:a<0,b>0,c>0,则abc<0,则①错误;根据对称轴为x=1可得:-b2a=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y>0,即4a+2b+c>0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a>0,如果开口向下,则a<0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.9、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.10、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.二、填空题(共7小题,每小题3分,满分21分)11、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用12、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.13、1【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把变形后整体代入即可.详解:故答案为1.点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.14、-5【解析】

分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.【详解】解:表示一元二次方程的一次项系数.【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.15、1【解析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16、:k<1.【解析】

∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.17、1.【解析】

直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.【详解】∵点A(2,2)在双曲线上,∴k=4,∵平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,∴D点纵坐标为:1,∴DE=1,O′E=1,∴D点横坐标为:x==4,∴OO′=1,故答案为1.【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.三、解答题(共7小题,满分69分)18、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).【解析】

(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值为.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.19、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;(2)进行分类讨论,分别求出t和r的值.【详解】(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵对称轴为=1,∴=1,∴a=,∴y=x2+x.(2)因为y=x2+x=(x-1)2+,所以顶点(1,)当-2<r<1,且r≠0时,当x=r时,y最大=r2+r=1.5r,得r=-1,当x=-2时,y最小=-4,所以,这时t=-4,r=-1.当r≥1时,y最大=,所以1.5r=,所以r=,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.20、2【解析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,当a=1时,原式=14+16﹣1﹣1=2.21、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到ABP∽△CAD,根据相似三角形的性质得到结论;过A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根据勾股定理得到根据相似三角形的性质得到,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP与△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)过A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴过A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.22、3+3【解析】

先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.【详解】原式=1+x=1+xx+1=1+1=xx-1当x=2cos30°+tan45°=2×32=3+1时.xx-1=【点睛】本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.23、(1)10,1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.【解析】

(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤时的函数关系式中求出x值,此题得解.【详解】解:(1)∵当x=0时,y=10,∴甲乙两地相距10千米.10÷1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论