版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年苏科版数学八年级下册章节拔高检测卷(易错专练)第9章《中心对称图形—平行四边形》考试时间:100分钟试卷满分:100分难度系数:0.50一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023秋•雷州市期末)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30° B.35° C.40° D.45°解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.2.(2分)(2023•攸县一模)已知△ABC中,AB=AC,求证:∠B<90°,下面写出运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.④③①② B.③④②① C.①②③④ D.③④①②解:运用反证法证明这个命题的四个步骤:1、假设在△ABC中,∠B≥90°,2、由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,3、∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,4、因此假设不成立.∴∠B<90°,故选:D.3.(2分)(2022秋•洛江区期末)用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先应该假设()A.∠B≥90° B.∠B>90° C.AB≠AC D.AB≠AC且∠B≥90°解:用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先假设∠B≥90°,故选:A.4.(2分)(2023•蒙阴县三模)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90° B.180°﹣α C.α﹣45° D.270°﹣α解:如图:∵四边形ABCD,四边形EFGH都是矩形,∴∠B=∠EHG=90°,∵∠1是△EBH的一个外角,∴∠3=∠1﹣∠B=α﹣90°,∴∠2=∠EHG﹣∠3=90°﹣(α﹣90°)=180°﹣α,故选:B.5.(2分)(2023春•汉阳区期末)下列说法正确的是()A.对角线互相垂直的平行四边形是正方形 B.一组对边平行另一组对边相等的四边形是平行四边形 C.一组对边平行且一组对角相等的四边形是平行四边形 D.对角线互相垂直的四边形是菱形解:A、对角线互相垂直且相等的平行四边形是正方形,所以A选项错误.B、当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故B选项错误.C、由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,故C选项正确.D、对角线互相垂直的平行四边形是菱形,所以D选项错误;故选:C.6.(2分)(2023秋•泗水县期中)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002 B.1001 C.1000 D.999解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1﹣3;图②中三角形的个数为5=4×2﹣3;图③中三角形的个数为9=4×3﹣3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n﹣3,即4n﹣3=4005,n=1002,故选:A.7.(2分)(2023春•高邮市期中)如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2 B.3.4 C.3.6 D.4解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.8.(2分)(2023春•德州期中)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5 B.4 C. D.3解:连接AP,∵AB=6,AC=8,BC=10,∴AB2+AC2=62+82=100,BC2=102=100,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠PEA=∠PFA=90°,∴四边形AEPF是矩形,∴AP=EF,∴当AP⊥BC时,AP有最小值,即EF有最小值,∵△ABC的面积=BC•AP=AB•AC,∴BC•AP=AB•AC,∴10AP=6×8,∴AP=,∴AP=EF=,∴EF的最小值为,故选:C.9.(2分)(2023春•开江县校级期末)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE和等边△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF、EF,则以下四个结论,正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③CG⊥AE;④△CEF是等边三角形.A.③④ B.①②④ C.①②③ D.①②③④解:∵△ABE、△ADF是等边三角形,∴FD=AD,BE=AB,∵AD=BC,AB=DC,∴FD=BC,BE=DC,∵∠CBE=∠FDC,∠FDA=∠ABE,∴∠CDF=∠EBC,∴△CDF≌△EBC(SAS),故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段,∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故③错误;同理①②可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC(SAS),∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故④正确.故选:B.10.(2分)(2023春•沭阳县月考)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE、BF相交于点H,直线BF交线段AD的延长线于点G,下列结论:①CE=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;⑤BH2+BG2=AG2.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵∠DBC=45°,DE⊥BC,∴△DEB是等腰直角三角形,∴BE=DE,∵BF⊥CD,∴∠FHD+∠FDH=90°,∵∠C+∠FDH=90°,∴∠C=∠FHD,∵∠C=∠A,∠FHD=∠BHE,∴∠A=∠BHE,故②正确;在△BEH和△DEC中,,∴△BEH≌△DEC(AAS),∴EH=EC,∵H不是DE的中点,∴BE=DE≠2EC,故①错误;∵AB=CD,BH=CD,∴AB=BH,故③正确;∵∠BHD=90°+∠HBE,∠BDG=90°+∠BDE,∵∠BDE>∠HBE,∴∠BDG>∠BHD,故④错误;∵BF⊥CD,AB∥CD,∴BF⊥AB,∴∠ABG=90°,∴AB2+BG2=AG2,∵AB=BH,∴BH2+BG2=AG2,故⑤正确.∴其中正确的结论有②③⑤,共3个.故选:C.二、填空题(本大题共10小题,每题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023秋•大埔县期中)如图,在△ABC中,∠ABC=90°,点D是边AC的中点,若BD=5,BC=6,则AB=8.解:∵∠ABC=90°,点D是边AC的中点,BD=5,∴AC=2BD=10,∵BC=6,∴AB===8,故答案为:8.12.(2分)(2023春•启东市期末)如图,将△ABC绕点A按逆时针方向旋转70°,得到△AED,连接BE,若AD∥BE,则∠CAE的度数为15.解:∵将△ABC绕点A按逆时针方向旋转70°,得到△AED,∴AB=AE,∠BAC=∠EAD,∠BAE=70°,∴∠AEB==55°,∵AD∥BE,∴∠EAD=∠AEB=55°,∴∠BAC=55°,∴∠CAE=∠BAE﹣∠BAC=15°.故答案为:15.13.(2分)(2023春•朝阳区期中)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(8,0),点C的坐标是(2,6),则点B的坐标是(10,6).解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(8,0),∴OA=BC=8,∵C(2,6),∴B(10,6),故答案为:(10,6)14.(2分)(2023春•吉林期末)如图,在平面直角坐标系中,Rt△AOC的斜边OA在第一象限,过点A作AB⊥x轴于点B,若AB=3,OB=4,点E为OA的中点,则CE=2.5.解:∵AB⊥x轴,∴∠ABO=90°,∵AB=3,OB=4,∴OA===5,在Rt△AOC中,点E为OA的中点,∴CE=OA=2.5,故答案为:2.5.15.(2分)(2023秋•郸城县期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=2﹣或时,△PQF为等腰三角形.解:∵∠ABC=90°,∠ACB=30°,AB=2cm,∴AC=2AB=4cm,BC==2,∵E、F分别是AB、AC的中点,∴EF=BC=cm,BF=AC=2cm,由题意得:EP=t,BQ=2t,∴PF=﹣t,FQ=2﹣2t,分三种情况:①当PF=FQ时,如图1,△PQF为等腰三角形.则﹣t=2﹣2t,t=2﹣;②如图2,当PQ=FQ时,△PQF为等腰三角形,过Q作QD⊥EF于D,∴PF=2DF,∵BF=CF,∴∠FBC=∠C=30°,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠PFQ=∠FBC=30°,∵FQ=2﹣2t,∴DQ=FQ=1﹣t,∴DF=(1﹣t),∴PF=2DF=2(1﹣t),∵EF=EP+PF=,∴t+2(1﹣t)=,t=;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣或时,△PQF为等腰三角形.故答案为:2﹣或.16.(2分)(2023春•雅安期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C逆时针旋转得到△A1B1C,点M是BC的中点,点N是A1B1的中点,连接MN,若AB=12,则线段MN的最大值是9.解:连接CN,∵∠ACB=90°,∠A=30°,AB=12,∴BC=AB=6,∵点M是BC的中点,∴CM=CB=3,由旋转得:∠ACB=∠A1CB1=90°,AB=A1B1=12,∵点N是A1B1的中点,∴CN=A1B1=6,∵MN≤CM+CN,∴MN≤9,∴线段MN的最大值是9,故答案为:9.17.(2分)(2023•徐州二模)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.解:∵矩形ABCD中,AB=4,AD=3=BC,∴Rt△ACD中,AC==5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.18.(2分)(2023春•新罗区校级期中)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设∠CBE=25°,则∠AFP的度数为65°.解:∵四边形PBEF为正方形,∴∠PBE=90°,∵∠CBE=25°,∴∠PBC=90°﹣25°=65°,∵四边形APCD、PBEF是正方形,∴AP=CP,∠APF=∠CPB=90°,PF=PB,在△APF和△CPB中,,∴△APF≌△CPB(SAS),∴∠AFP=∠PBC=65°.故答案为:65°.19.(2分)(2023秋•伊金霍洛旗期末)如图,在正方形ABCD中,AB=3cm,延长BC到点E,使CE=1cm,连接DE,动点P从点A出发,以每秒1cm的速度沿AB→BC→CD→DA向终点A运动.设点P的运动时间为t秒,当△PBC和△DCE全等时,t的值为2或7.解:∵△DCE是直角三角形,∴△PBC为直角三角形,∴点P只能在AB上或者CD上,当点P在AB上时,有BP=CE,∴BP=CE=1,∴AP=2,∴t=2÷1=2,当点P在CD上时,有CP=CE=1,∴t=(3+3+1)÷1=7,故答案为:2或7.20.(2分)(2022秋•乌鲁木齐期末)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,把△ABC绕BC边的中点O旋转后得△DEF,若直角顶点E恰好落在AC边上,且DF边交AC边于点G,则△FCG的面积为.解:∵在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC=5,∵点O是BC边的中点,∴OC=OB=BC=2,∵把△ABC绕BC边的中点O旋转后得△DEF,若直角顶点E恰好落在AC边上,∴CO=FO=BO=OE=2,∠DFE=∠ACB,∠ABC=∠DEF,AC=DF,∴CO=OE,∴∠ACB=∠OEC,∴∠DFE=∠CEF,∴FG=EG,如图,连接BE,∵∠DFE+∠D=∠FEG+∠GED=90°,∠COF=∠BOE,∴∠D=∠DEG,△COF≌△BOE(SAS),∴EG=DG,BE=CF,∠FCO=∠OBE,∴EG=DF=,∵CO=BO=OE=BC,∴∠BEC=90°,∴BE==,∴CE=,CF=,∴CG=CE﹣EG=﹣=,∵∠BEC=90°,∴∠OBE+∠BCE=90°,∴∠FCO+∠ACB=90°,即∠FCG=90°.∴S△FCG=•FC•CG=××=.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•朔州期中)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.解:由旋转得:AB=AD=3,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB=AD=3,∴BD的长为3.22.(6分)(2023春•开江县校级期末)如图,将△ABC绕点A逆时针旋转60°得到△AEF,点E落在BC边上,EF与AC交于点G.(1)求证:△ABE是等边三角形;(2)若∠ACB=28°,求∠FGC的度数.(1)证明:∵将△ABC绕点A逆时针旋转60°得到△AEF,∴AB=AE,∠BAE=60°,∴△ABE是等边三角形.(2)解:∵将△ABC绕点A逆时针旋转60°得到△AEF,∴∠BAE=∠CAF=60°,∠ACB=∠AFE=28°,∵∠FGC是△AGF的外角,∴∠FGC=∠CAF+∠AFE=88°.23.(8分)(2023春•渠县校级期末)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是(﹣2,0)解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P的坐标是(﹣2,0).故答案为:(﹣2,0).24.(8分)(2023春•滨海县期中)在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G,H分别是AD,BC中点,则四边形EGFH一定是怎样的四边形(E、F相遇时除外)?答:四边形EGFH是平行四边形;(直接填空,不用说理)(2)在(1)条件下,若四边形EGFH为矩形,求t的值;(3)在(1)条件下,若G向D点运动,H向B点运动,且与点E,F以相同的速度同时出发,若四边形EGFH为菱形,求t的值.解:(1)∵四边形EGFH是平行四边形,理由如下:由题意得:AE=CF=t,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠GAE=∠HCF,∵G,H分别是AD,BC中点,∴AG=AD,CH=BC,∴AG=CH,∴△AEG≌△CFH(SAS),∴EG=FH,∠AEG=∠CFH,∴∠FEG=∠EFH,∴EG∥HF,∴四边形EGFH是平行四边形;故答案为:四边形EGFH是平行四边形;(2)如图1,连接GH,由(1)得AG=BH,AG∥BH,∠B=90°,∴四边形ABHG是矩形,∴GH=AB=6,①如图1,当四边形EGFH是矩形时,∴EF=GH=6,∵AE=CF=t,∴EF=10﹣2t=6,∴t=2;②如图2,当四边形EGFH是矩形时,∵EF=GH=6,AE=CF=t,∴EF=t+t﹣10=2t﹣10=6,∴t=8;综上,四边形EGFH为矩形时t=2或t=8;(3)如图3,M和N分别是AD和BC的中点,连接AH,CG,GH,AC与GH交于O,∵四边形EGFH为菱形,∴GH⊥EF,OG=OH,OE=OF,∴OA=OC,AG=AH,∴四边形AGCH为菱形,∴AG=CG,设AG=CG=x,则DG=8﹣x,由勾股定理可得:CD2+DG2=CG2,即:62+(8﹣x)2=x2,解得:x=,∴MG=﹣4=,即t=,∴当t=时,四边形EGFH为菱形.25.(8分)(2022秋•新泰市期末)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形:(2)若∠ACB=90°,AC=6cm,DE=2cm,求四边形DEFB的面积.(1)证明:∵点D,E分别是AC,AB的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四边形DEFB是平行四边形;(2)解:由(1)得:DE=BF=2,∵D是AC的中点,AC=6,∴CD=AC=3,∵∠ACB=90°,∴四边形DEFB的面积=BF•CD=2×3=6(cm2).26.(8分)(2023春•鼎城区期末)如图,点E在正方形ABCD的边AB上,点F在边BC的延长线上,且AE=CF.求证:(1)DE=DF;(2)∠EDF=90°.证明:(1)∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∴∠DCF=180°﹣∠BCD=90°,∴∠A=∠DCF=90°,∵AE=CF,∴△DAE≌△DCF(SAS),∴DE=DF;(2)∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADE+∠EDC=90°,∵△DAE≌△DCF,∴∠ADE=∠CDF,∴∠CDF+∠EDC=90°,∴∠EDF=90°.27.(8分)(2023春•河源期末)已知△ABC是边长为6的等边三角形,点D是射线BC上的动点,将线段AD绕点D顺时针方向旋转60°得到线段DE,连接CE.(1)如图1,求证:CE=BD;(2)如图2,当BD等于多少时,∠DEC=30°.(1)证明:连接AE,∵△ABC是等边三角形∴AB=AC,∠BAC=60°,由旋转得:AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论