2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题含解析_第1页
2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题含解析_第2页
2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题含解析_第3页
2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题含解析_第4页
2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年重庆市九龙坡区杨家坪中学中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y22.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有()A. B. C. D.3.已知二次函数y=x2+bx+c的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=04.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6 B.()7 C.()6 D.()75.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.6.计算(—2)2-3的值是()A、1B、2C、—1D、—27.的平方根是()A.2 B. C.±2 D.±8.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.9.如图,反比例函数y=-4x的图象与直线y=-1A.8B.6C.4D.210.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.12.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为_____.13.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.14.已知点、都在反比例函数的图象上,若,则k的值可以取______写出一个符合条件的k值即可.15.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.16.2017年端午小长假的第一天,永州市共接待旅客约275000人次,请将275000用科学记数法表示为___________________.17.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)

三、解答题(共7小题,满分69分)18.(10分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.19.(5分)已知是的函数,自变量的取值范围是的全体实数,如表是与的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出时所对应的点,并写出.(4)结合函数的图象,写出该函数的一条性质:.20.(8分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.21.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).22.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)23.(12分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.24.(14分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.2、D【解析】

根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.

故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、D【解析】

抛物线的顶点坐标为P(−,),设A、B两点的坐标为A(,0)、B(,0)则AB=,根据根与系数的关系把AB的长度用b、c表示,而S△APB=1,然后根据三角形的面积公式就可以建立关于b、c的等式.【详解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴−××,∴,设=s,则,故s=2,∴=2,∴.故选D.【点睛】本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.4、A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.考点:勾股定理.5、B【解析】

根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数的图象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=.设EG=x,则BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.6、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。7、D【解析】

先化简,然后再根据平方根的定义求解即可.【详解】∵=2,2的平方根是±,∴的平方根是±.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.8、D【解析】

根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.10、C【解析】

根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.二、填空题(共7小题,每小题3分,满分21分)11、4π﹣1【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,

∴∠COD=45°,

∴OC=CD=4,

∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积

==4π-1.故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.12、【解析】

连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.13、1.【解析】

根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),

设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,

∴抛物线解析式为y=-0.5x1+1,

当水面下降1.5米,通过抛物线在图上的观察可转化为:

当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,

可以通过把y=-1.5代入抛物线解析式得出:

-1.5=-0.5x1+1,

解得:x=±3,

1×3-4=1,

所以水面下降1.5m,水面宽度增加1米.

故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.14、-1【解析】

利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值.【详解】解:点、都在反比例函数的图象上,,

在每个象限内,y随着x的增大而增大,

反比例函数图象在第一、三象限,

的值可以取等,答案不唯一

故答案为:.【点睛】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.15、【解析】

由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案为.【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16、1.75×2【解析】试题解析:175000=1.75×2.考点:科学计数法----表示较大的数17、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.三、解答题(共7小题,满分69分)18、(1)12(2)y=(0<x<5)(3)或【解析】试题分析:(1)过点A作AH⊥BC于点H,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明△BPD∽△BAC,得到=,再根据,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AH⊥BC于点H,则∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,过C作CE⊥AB交BA延长线于E,可得cos∠CAE=,①当∠ADP=90°时,cos∠APD=cos∠CAE=,即,解得x=;②当∠PAD=90°时,,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.19、(1);(2)见解析;(3);(4)当时,随的增大而减小.【解析】

(1)根据表中,的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是;故答案为:.(2)该函数的图象如图所示;(3)当时所对应的点如图所示,且;故答案为:;(4)函数的性质:当时,随的增大而减小.故答案为:当时,随的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.20、135°【解析】

先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【点睛】本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.21、5.7米.【解析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.22、10【解析】试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD=0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CD⊥AB于点D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.23、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论